{
"cells": [
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"from clickhouse_driver import Client\n",
"#client = Client(host='localhost',password=\"click123!\",settings={\"use_numpy\":True})\n",
"client = Client(host='localhost',password=\"click123!\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"result = client.query_dataframe(\"select * from stock_cn where code=%(code)s order by date\", {\"code\":\"sh.600050\"})"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" code | \n",
" open | \n",
" high | \n",
" low | \n",
" close | \n",
" preclose | \n",
" volume | \n",
" amount | \n",
" adjustflag | \n",
" turn | \n",
" tradestatus | \n",
" pctChg | \n",
" isST | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2006-01-04 | \n",
" sh.600050 | \n",
" 2.80 | \n",
" 2.89 | \n",
" 2.78 | \n",
" 2.86 | \n",
" 2.80 | \n",
" 121344910 | \n",
" 346683264.0 | \n",
" 3 | \n",
" 1.866845 | \n",
" 1 | \n",
" 2.142855 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2006-01-05 | \n",
" sh.600050 | \n",
" 2.86 | \n",
" 2.92 | \n",
" 2.85 | \n",
" 2.90 | \n",
" 2.86 | \n",
" 110247291 | \n",
" 319527360.0 | \n",
" 3 | \n",
" 1.696112 | \n",
" 1 | \n",
" 1.398608 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2006-01-06 | \n",
" sh.600050 | \n",
" 2.90 | \n",
" 2.94 | \n",
" 2.87 | \n",
" 2.91 | \n",
" 2.90 | \n",
" 96796753 | \n",
" 282116896.0 | \n",
" 3 | \n",
" 1.489181 | \n",
" 1 | \n",
" 0.344827 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2006-01-09 | \n",
" sh.600050 | \n",
" 2.91 | \n",
" 2.93 | \n",
" 2.88 | \n",
" 2.91 | \n",
" 2.91 | \n",
" 83990367 | \n",
" 244001568.0 | \n",
" 3 | \n",
" 1.292159 | \n",
" 1 | \n",
" 0.000000 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2006-01-10 | \n",
" sh.600050 | \n",
" 2.91 | \n",
" 2.91 | \n",
" 2.85 | \n",
" 2.89 | \n",
" 2.91 | \n",
" 40008102 | \n",
" 115096856.0 | \n",
" 3 | \n",
" 0.615509 | \n",
" 1 | \n",
" -0.687284 | \n",
" 0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 3638 | \n",
" 2020-12-21 | \n",
" sh.600050 | \n",
" 4.68 | \n",
" 4.69 | \n",
" 4.62 | \n",
" 4.64 | \n",
" 4.69 | \n",
" 79328390 | \n",
" 368504352.0 | \n",
" 3 | \n",
" 0.259800 | \n",
" 1 | \n",
" -1.066100 | \n",
" 0 | \n",
"
\n",
" \n",
" 3639 | \n",
" 2020-12-22 | \n",
" sh.600050 | \n",
" 4.62 | \n",
" 4.64 | \n",
" 4.53 | \n",
" 4.54 | \n",
" 4.64 | \n",
" 113513761 | \n",
" 520809376.0 | \n",
" 3 | \n",
" 0.371700 | \n",
" 1 | \n",
" -2.155200 | \n",
" 0 | \n",
"
\n",
" \n",
" 3640 | \n",
" 2020-12-23 | \n",
" sh.600050 | \n",
" 4.53 | \n",
" 4.55 | \n",
" 4.49 | \n",
" 4.51 | \n",
" 4.54 | \n",
" 93335737 | \n",
" 421419616.0 | \n",
" 3 | \n",
" 0.305600 | \n",
" 1 | \n",
" -0.660800 | \n",
" 0 | \n",
"
\n",
" \n",
" 3641 | \n",
" 2020-12-24 | \n",
" sh.600050 | \n",
" 4.50 | \n",
" 4.51 | \n",
" 4.44 | \n",
" 4.45 | \n",
" 4.51 | \n",
" 76268133 | \n",
" 340610144.0 | \n",
" 3 | \n",
" 0.249800 | \n",
" 1 | \n",
" -1.330400 | \n",
" 0 | \n",
"
\n",
" \n",
" 3642 | \n",
" 2020-12-25 | \n",
" sh.600050 | \n",
" 4.45 | \n",
" 4.49 | \n",
" 4.43 | \n",
" 4.49 | \n",
" 4.45 | \n",
" 44819735 | \n",
" 200330960.0 | \n",
" 3 | \n",
" 0.146800 | \n",
" 1 | \n",
" 0.898900 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
3643 rows × 14 columns
\n",
"
"
],
"text/plain": [
" date code open high low close preclose volume \\\n",
"0 2006-01-04 sh.600050 2.80 2.89 2.78 2.86 2.80 121344910 \n",
"1 2006-01-05 sh.600050 2.86 2.92 2.85 2.90 2.86 110247291 \n",
"2 2006-01-06 sh.600050 2.90 2.94 2.87 2.91 2.90 96796753 \n",
"3 2006-01-09 sh.600050 2.91 2.93 2.88 2.91 2.91 83990367 \n",
"4 2006-01-10 sh.600050 2.91 2.91 2.85 2.89 2.91 40008102 \n",
"... ... ... ... ... ... ... ... ... \n",
"3638 2020-12-21 sh.600050 4.68 4.69 4.62 4.64 4.69 79328390 \n",
"3639 2020-12-22 sh.600050 4.62 4.64 4.53 4.54 4.64 113513761 \n",
"3640 2020-12-23 sh.600050 4.53 4.55 4.49 4.51 4.54 93335737 \n",
"3641 2020-12-24 sh.600050 4.50 4.51 4.44 4.45 4.51 76268133 \n",
"3642 2020-12-25 sh.600050 4.45 4.49 4.43 4.49 4.45 44819735 \n",
"\n",
" amount adjustflag turn tradestatus pctChg isST \n",
"0 346683264.0 3 1.866845 1 2.142855 0 \n",
"1 319527360.0 3 1.696112 1 1.398608 0 \n",
"2 282116896.0 3 1.489181 1 0.344827 0 \n",
"3 244001568.0 3 1.292159 1 0.000000 0 \n",
"4 115096856.0 3 0.615509 1 -0.687284 0 \n",
"... ... ... ... ... ... ... \n",
"3638 368504352.0 3 0.259800 1 -1.066100 0 \n",
"3639 520809376.0 3 0.371700 1 -2.155200 0 \n",
"3640 421419616.0 3 0.305600 1 -0.660800 0 \n",
"3641 340610144.0 3 0.249800 1 -1.330400 0 \n",
"3642 200330960.0 3 0.146800 1 0.898900 0 \n",
"\n",
"[3643 rows x 14 columns]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"result['date'] = pd.to_datetime(result['date'])\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2006-01-04\n",
"1 2006-01-05\n",
"2 2006-01-06\n",
"3 2006-01-09\n",
"4 2006-01-10\n",
"5 2006-01-11\n",
"6 2006-01-12\n",
"7 2006-01-13\n",
"8 2006-01-16\n",
"9 2006-01-17\n",
"10 2006-01-18\n",
"11 2006-01-19\n",
"12 2006-01-20\n",
"13 2006-01-23\n",
"14 2006-01-24\n",
"15 2006-01-25\n",
"16 2006-02-06\n",
"17 2006-02-07\n",
"18 2006-02-08\n",
"19 2006-02-09\n",
"Name: date, dtype: datetime64[ns]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"date = result['date'][:20]\n",
"date"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2.80\n",
"1 2.86\n",
"2 2.90\n",
"3 2.91\n",
"4 2.91\n",
"5 2.89\n",
"6 2.83\n",
"7 2.85\n",
"8 2.84\n",
"9 2.76\n",
"10 2.75\n",
"11 2.82\n",
"12 2.85\n",
"13 2.85\n",
"14 2.83\n",
"15 2.80\n",
"16 2.84\n",
"17 2.82\n",
"18 2.72\n",
"19 2.74\n",
"Name: open, dtype: float64"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"openPrice = result['open'][:20]\n",
"openPrice"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" code | \n",
" open | \n",
" high | \n",
" low | \n",
" close | \n",
" preclose | \n",
" volume | \n",
" amount | \n",
" adjustflag | \n",
" turn | \n",
" tradestatus | \n",
" pctChg | \n",
" isST | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2006-01-04 | \n",
" sh.600050 | \n",
" 2.80 | \n",
" 2.89 | \n",
" 2.78 | \n",
" 2.86 | \n",
" 2.80 | \n",
" 121344910 | \n",
" 346683264.0 | \n",
" 3 | \n",
" 1.866845 | \n",
" 1 | \n",
" 2.142855 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2006-01-05 | \n",
" sh.600050 | \n",
" 2.86 | \n",
" 2.92 | \n",
" 2.85 | \n",
" 2.90 | \n",
" 2.86 | \n",
" 110247291 | \n",
" 319527360.0 | \n",
" 3 | \n",
" 1.696112 | \n",
" 1 | \n",
" 1.398608 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 2006-01-06 | \n",
" sh.600050 | \n",
" 2.90 | \n",
" 2.94 | \n",
" 2.87 | \n",
" 2.91 | \n",
" 2.90 | \n",
" 96796753 | \n",
" 282116896.0 | \n",
" 3 | \n",
" 1.489181 | \n",
" 1 | \n",
" 0.344827 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 2006-01-09 | \n",
" sh.600050 | \n",
" 2.91 | \n",
" 2.93 | \n",
" 2.88 | \n",
" 2.91 | \n",
" 2.91 | \n",
" 83990367 | \n",
" 244001568.0 | \n",
" 3 | \n",
" 1.292159 | \n",
" 1 | \n",
" 0.000000 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 2006-01-10 | \n",
" sh.600050 | \n",
" 2.91 | \n",
" 2.91 | \n",
" 2.85 | \n",
" 2.89 | \n",
" 2.91 | \n",
" 40008102 | \n",
" 115096856.0 | \n",
" 3 | \n",
" 0.615509 | \n",
" 1 | \n",
" -0.687284 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" 2006-01-11 | \n",
" sh.600050 | \n",
" 2.89 | \n",
" 2.91 | \n",
" 2.83 | \n",
" 2.84 | \n",
" 2.89 | \n",
" 72812575 | \n",
" 208591280.0 | \n",
" 3 | \n",
" 1.120193 | \n",
" 1 | \n",
" -1.730110 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" 2006-01-12 | \n",
" sh.600050 | \n",
" 2.83 | \n",
" 2.91 | \n",
" 2.82 | \n",
" 2.84 | \n",
" 2.84 | \n",
" 63487193 | \n",
" 181334960.0 | \n",
" 3 | \n",
" 0.976726 | \n",
" 1 | \n",
" 0.000000 | \n",
" 0 | \n",
"
\n",
" \n",
" 7 | \n",
" 2006-01-13 | \n",
" sh.600050 | \n",
" 2.85 | \n",
" 2.90 | \n",
" 2.83 | \n",
" 2.84 | \n",
" 2.84 | \n",
" 41028464 | \n",
" 116972664.0 | \n",
" 3 | \n",
" 0.631207 | \n",
" 1 | \n",
" 0.000000 | \n",
" 0 | \n",
"
\n",
" \n",
" 8 | \n",
" 2006-01-16 | \n",
" sh.600050 | \n",
" 2.84 | \n",
" 2.84 | \n",
" 2.77 | \n",
" 2.77 | \n",
" 2.84 | \n",
" 67341655 | \n",
" 188411488.0 | \n",
" 3 | \n",
" 1.036025 | \n",
" 1 | \n",
" -2.464787 | \n",
" 0 | \n",
"
\n",
" \n",
" 9 | \n",
" 2006-01-17 | \n",
" sh.600050 | \n",
" 2.76 | \n",
" 2.81 | \n",
" 2.73 | \n",
" 2.75 | \n",
" 2.77 | \n",
" 53713708 | \n",
" 148803136.0 | \n",
" 3 | \n",
" 0.826365 | \n",
" 1 | \n",
" -0.722021 | \n",
" 0 | \n",
"
\n",
" \n",
" 10 | \n",
" 2006-01-18 | \n",
" sh.600050 | \n",
" 2.75 | \n",
" 2.85 | \n",
" 2.75 | \n",
" 2.82 | \n",
" 2.75 | \n",
" 87429754 | \n",
" 246842592.0 | \n",
" 3 | \n",
" 1.345073 | \n",
" 1 | \n",
" 2.545452 | \n",
" 0 | \n",
"
\n",
" \n",
" 11 | \n",
" 2006-01-19 | \n",
" sh.600050 | \n",
" 2.82 | \n",
" 2.88 | \n",
" 2.81 | \n",
" 2.85 | \n",
" 2.82 | \n",
" 74806906 | \n",
" 212886336.0 | \n",
" 3 | \n",
" 1.150875 | \n",
" 1 | \n",
" 1.063829 | \n",
" 0 | \n",
"
\n",
" \n",
" 12 | \n",
" 2006-01-20 | \n",
" sh.600050 | \n",
" 2.85 | \n",
" 2.87 | \n",
" 2.79 | \n",
" 2.85 | \n",
" 2.85 | \n",
" 91228551 | \n",
" 257900592.0 | \n",
" 3 | \n",
" 1.403516 | \n",
" 1 | \n",
" 0.000000 | \n",
" 0 | \n",
"
\n",
" \n",
" 13 | \n",
" 2006-01-23 | \n",
" sh.600050 | \n",
" 2.85 | \n",
" 2.88 | \n",
" 2.80 | \n",
" 2.83 | \n",
" 2.85 | \n",
" 62699933 | \n",
" 177741232.0 | \n",
" 3 | \n",
" 0.964614 | \n",
" 1 | \n",
" -0.701754 | \n",
" 0 | \n",
"
\n",
" \n",
" 14 | \n",
" 2006-01-24 | \n",
" sh.600050 | \n",
" 2.83 | \n",
" 2.84 | \n",
" 2.77 | \n",
" 2.80 | \n",
" 2.83 | \n",
" 77417400 | \n",
" 216744336.0 | \n",
" 3 | \n",
" 1.191037 | \n",
" 1 | \n",
" -1.060070 | \n",
" 0 | \n",
"
\n",
" \n",
" 15 | \n",
" 2006-01-25 | \n",
" sh.600050 | \n",
" 2.80 | \n",
" 2.88 | \n",
" 2.79 | \n",
" 2.85 | \n",
" 2.80 | \n",
" 69115442 | \n",
" 196750688.0 | \n",
" 3 | \n",
" 1.063314 | \n",
" 1 | \n",
" 1.785713 | \n",
" 0 | \n",
"
\n",
" \n",
" 16 | \n",
" 2006-02-06 | \n",
" sh.600050 | \n",
" 2.84 | \n",
" 2.85 | \n",
" 2.78 | \n",
" 2.82 | \n",
" 2.85 | \n",
" 143182016 | \n",
" 401863840.0 | \n",
" 3 | \n",
" 2.202800 | \n",
" 1 | \n",
" -1.052631 | \n",
" 0 | \n",
"
\n",
" \n",
" 17 | \n",
" 2006-02-07 | \n",
" sh.600050 | \n",
" 2.82 | \n",
" 2.82 | \n",
" 2.69 | \n",
" 2.72 | \n",
" 2.82 | \n",
" 254229177 | \n",
" 697083968.0 | \n",
" 3 | \n",
" 3.911218 | \n",
" 1 | \n",
" -3.546096 | \n",
" 0 | \n",
"
\n",
" \n",
" 18 | \n",
" 2006-02-08 | \n",
" sh.600050 | \n",
" 2.72 | \n",
" 2.74 | \n",
" 2.68 | \n",
" 2.74 | \n",
" 2.72 | \n",
" 181753445 | \n",
" 492369920.0 | \n",
" 3 | \n",
" 2.796207 | \n",
" 1 | \n",
" 0.735293 | \n",
" 0 | \n",
"
\n",
" \n",
" 19 | \n",
" 2006-02-09 | \n",
" sh.600050 | \n",
" 2.74 | \n",
" 2.74 | \n",
" 2.65 | \n",
" 2.68 | \n",
" 2.74 | \n",
" 174169047 | \n",
" 467068832.0 | \n",
" 3 | \n",
" 2.679524 | \n",
" 1 | \n",
" -2.189779 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" date code open high low close preclose volume \\\n",
"0 2006-01-04 sh.600050 2.80 2.89 2.78 2.86 2.80 121344910 \n",
"1 2006-01-05 sh.600050 2.86 2.92 2.85 2.90 2.86 110247291 \n",
"2 2006-01-06 sh.600050 2.90 2.94 2.87 2.91 2.90 96796753 \n",
"3 2006-01-09 sh.600050 2.91 2.93 2.88 2.91 2.91 83990367 \n",
"4 2006-01-10 sh.600050 2.91 2.91 2.85 2.89 2.91 40008102 \n",
"5 2006-01-11 sh.600050 2.89 2.91 2.83 2.84 2.89 72812575 \n",
"6 2006-01-12 sh.600050 2.83 2.91 2.82 2.84 2.84 63487193 \n",
"7 2006-01-13 sh.600050 2.85 2.90 2.83 2.84 2.84 41028464 \n",
"8 2006-01-16 sh.600050 2.84 2.84 2.77 2.77 2.84 67341655 \n",
"9 2006-01-17 sh.600050 2.76 2.81 2.73 2.75 2.77 53713708 \n",
"10 2006-01-18 sh.600050 2.75 2.85 2.75 2.82 2.75 87429754 \n",
"11 2006-01-19 sh.600050 2.82 2.88 2.81 2.85 2.82 74806906 \n",
"12 2006-01-20 sh.600050 2.85 2.87 2.79 2.85 2.85 91228551 \n",
"13 2006-01-23 sh.600050 2.85 2.88 2.80 2.83 2.85 62699933 \n",
"14 2006-01-24 sh.600050 2.83 2.84 2.77 2.80 2.83 77417400 \n",
"15 2006-01-25 sh.600050 2.80 2.88 2.79 2.85 2.80 69115442 \n",
"16 2006-02-06 sh.600050 2.84 2.85 2.78 2.82 2.85 143182016 \n",
"17 2006-02-07 sh.600050 2.82 2.82 2.69 2.72 2.82 254229177 \n",
"18 2006-02-08 sh.600050 2.72 2.74 2.68 2.74 2.72 181753445 \n",
"19 2006-02-09 sh.600050 2.74 2.74 2.65 2.68 2.74 174169047 \n",
"\n",
" amount adjustflag turn tradestatus pctChg isST \n",
"0 346683264.0 3 1.866845 1 2.142855 0 \n",
"1 319527360.0 3 1.696112 1 1.398608 0 \n",
"2 282116896.0 3 1.489181 1 0.344827 0 \n",
"3 244001568.0 3 1.292159 1 0.000000 0 \n",
"4 115096856.0 3 0.615509 1 -0.687284 0 \n",
"5 208591280.0 3 1.120193 1 -1.730110 0 \n",
"6 181334960.0 3 0.976726 1 0.000000 0 \n",
"7 116972664.0 3 0.631207 1 0.000000 0 \n",
"8 188411488.0 3 1.036025 1 -2.464787 0 \n",
"9 148803136.0 3 0.826365 1 -0.722021 0 \n",
"10 246842592.0 3 1.345073 1 2.545452 0 \n",
"11 212886336.0 3 1.150875 1 1.063829 0 \n",
"12 257900592.0 3 1.403516 1 0.000000 0 \n",
"13 177741232.0 3 0.964614 1 -0.701754 0 \n",
"14 216744336.0 3 1.191037 1 -1.060070 0 \n",
"15 196750688.0 3 1.063314 1 1.785713 0 \n",
"16 401863840.0 3 2.202800 1 -1.052631 0 \n",
"17 697083968.0 3 3.911218 1 -3.546096 0 \n",
"18 492369920.0 3 2.796207 1 0.735293 0 \n",
"19 467068832.0 3 2.679524 1 -2.189779 0 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result[:20]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" open | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2.80 | \n",
" 2006-01-04 | \n",
"
\n",
" \n",
" 1 | \n",
" 2.86 | \n",
" 2006-01-05 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.90 | \n",
" 2006-01-06 | \n",
"
\n",
" \n",
" 3 | \n",
" 2.91 | \n",
" 2006-01-09 | \n",
"
\n",
" \n",
" 4 | \n",
" 2.91 | \n",
" 2006-01-10 | \n",
"
\n",
" \n",
" 5 | \n",
" 2.89 | \n",
" 2006-01-11 | \n",
"
\n",
" \n",
" 6 | \n",
" 2.83 | \n",
" 2006-01-12 | \n",
"
\n",
" \n",
" 7 | \n",
" 2.85 | \n",
" 2006-01-13 | \n",
"
\n",
" \n",
" 8 | \n",
" 2.84 | \n",
" 2006-01-16 | \n",
"
\n",
" \n",
" 9 | \n",
" 2.76 | \n",
" 2006-01-17 | \n",
"
\n",
" \n",
" 10 | \n",
" 2.75 | \n",
" 2006-01-18 | \n",
"
\n",
" \n",
" 11 | \n",
" 2.82 | \n",
" 2006-01-19 | \n",
"
\n",
" \n",
" 12 | \n",
" 2.85 | \n",
" 2006-01-20 | \n",
"
\n",
" \n",
" 13 | \n",
" 2.85 | \n",
" 2006-01-23 | \n",
"
\n",
" \n",
" 14 | \n",
" 2.83 | \n",
" 2006-01-24 | \n",
"
\n",
" \n",
" 15 | \n",
" 2.80 | \n",
" 2006-01-25 | \n",
"
\n",
" \n",
" 16 | \n",
" 2.84 | \n",
" 2006-02-06 | \n",
"
\n",
" \n",
" 17 | \n",
" 2.82 | \n",
" 2006-02-07 | \n",
"
\n",
" \n",
" 18 | \n",
" 2.72 | \n",
" 2006-02-08 | \n",
"
\n",
" \n",
" 19 | \n",
" 2.74 | \n",
" 2006-02-09 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" open date\n",
"0 2.80 2006-01-04\n",
"1 2.86 2006-01-05\n",
"2 2.90 2006-01-06\n",
"3 2.91 2006-01-09\n",
"4 2.91 2006-01-10\n",
"5 2.89 2006-01-11\n",
"6 2.83 2006-01-12\n",
"7 2.85 2006-01-13\n",
"8 2.84 2006-01-16\n",
"9 2.76 2006-01-17\n",
"10 2.75 2006-01-18\n",
"11 2.82 2006-01-19\n",
"12 2.85 2006-01-20\n",
"13 2.85 2006-01-23\n",
"14 2.83 2006-01-24\n",
"15 2.80 2006-01-25\n",
"16 2.84 2006-02-06\n",
"17 2.82 2006-02-07\n",
"18 2.72 2006-02-08\n",
"19 2.74 2006-02-09"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result[[\"open\",\"date\"]][:20]"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 3643 entries, 0 to 3642\n",
"Data columns (total 14 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 date 3643 non-null datetime64[ns]\n",
" 1 code 3643 non-null object \n",
" 2 open 3643 non-null float64 \n",
" 3 high 3643 non-null float64 \n",
" 4 low 3643 non-null float64 \n",
" 5 close 3643 non-null float64 \n",
" 6 preclose 3643 non-null float64 \n",
" 7 volume 3643 non-null int64 \n",
" 8 amount 3643 non-null float64 \n",
" 9 adjustflag 3643 non-null int64 \n",
" 10 turn 3643 non-null float64 \n",
" 11 tradestatus 3643 non-null int64 \n",
" 12 pctChg 3643 non-null float64 \n",
" 13 isST 3643 non-null int64 \n",
"dtypes: datetime64[ns](1), float64(8), int64(4), object(1)\n",
"memory usage: 398.6+ KB\n"
]
}
],
"source": [
"result.info()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[,\n",
" ]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAATuUlEQVR4nO3db5Bd9X3f8fcHCXBCHCTMDiWSXMm1xh05k9T0jkziP/WYjBDUY9GOx5UnUxRbU00m0NhtOg7U05Cx8yA0bWhobTyqoRYexkCJXTQuDlYxM35SZFYYY/4Ya4NNJI1AG0uGNMzYEXz74P7WvlrtSrt7d+/dld6vmTv3nO/vd+757tm7+uw991xtqgpJ0tntnGE3IEkaPsNAkmQYSJIMA0kShoEkCVg+7Abm6uKLL661a9cOuw1JWlL27dv311U1Mrm+ZMNg7dq1jI6ODrsNSVpSkjw/Vd3TRJIkw0CSZBhIkjAMJEkYBpIkDANJEoaBJIkl/DmDJa+qe6N+ts5EjZ7l6cZPesCp93G6eXOec6rx020/D+OzPnacOD7ZTI5DP/0uqvGe2rTH7jTLA++3d/01qFfhtVdPXn7t1Z71idprJ9cWsr8FPz7AP/k4LDv35Hofzr4w+Oy7YPzZnsKAn9iSNGs5cfVdv2cY9O1X/gX87fiJtUw60JMP/EKNJ93ln46nDZ1qPCc//rT7maKXmc6b96/5dD3M5fFPcWxmND4D084b0HNkIcdP97w77fKA++0dyzlwzjLIshOXzzmn3U8emzR/sX0/Zvp8XEBnXxj8+vXD7kCSFh3fQJYkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJYgZhkOSOJEeSPNlT+5Mk303yRJIvJ1nRM3ZjkrEkzya5sqe+udXGktzQU1+XZG+r35PkvHn8+iRJMzCTVwafBzZPqu0BfrmqfgX4HnAjQJINwFbgrW2bzyRZlmQZ8GngKmAD8KE2F+Bm4JaqejNwDNje11ckSZq104ZBVX0DODqp9rWqOt5WHwFWt+UtwN1V9eOq+j4wBmxst7Gqeq6qfgLcDWxJEuC9wH1t+13ANf19SZKk2ZqP9ww+Any1La8CDvSMHWy16epvAH7UEywT9Skl2ZFkNMno+Pj4dNMkSbPUVxgk+QRwHLhrfto5taraWVWdquqMjIwMYpeSdFaY8186S/JbwPuAK6p++od/DwFreqatbjWmqf8QWJFkeXt10DtfkjQgc3plkGQz8HHg/VX1Ss/QbmBrkvOTrAPWA98EHgXWtyuHzqP7JvPuFiIPAx9o228D7p/blyJJmquZXFr6ReD/Am9JcjDJduC/Aa8H9iR5PMlnAarqKeBe4GngL4DrqurV9lv/9cCDwDPAvW0uwO8D/zbJGN33EG6f169QknRa+dkZnqWl0+nU6OjosNuQpCUlyb6q6kyu+wlkSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEjMIgyR3JDmS5Mme2kVJ9iTZ3+5XtnqS3JpkLMkTSS7r2WZbm78/ybae+j9O8p22za1JMt9fpCTp1GbyyuDzwOZJtRuAh6pqPfBQWwe4CljfbjuA26AbHsBNwNuBjcBNEwHS5vyrnu0m70uStMBOGwZV9Q3g6KTyFmBXW94FXNNTv7O6HgFWJLkUuBLYU1VHq+oYsAfY3MZ+saoeqaoC7ux5LEnSgMz1PYNLqupwW34BuKQtrwIO9Mw72Gqnqh+coj6lJDuSjCYZHR8fn2PrkqTJ+n4Duf1GX/PQy0z2tbOqOlXVGRkZGcQuJemsMNcweLGd4qHdH2n1Q8CannmrW+1U9dVT1CVJAzTXMNgNTFwRtA24v6d+bbuq6HLgpXY66UFgU5KV7Y3jTcCDbezlJJe3q4iu7XksSdKALD/dhCRfBN4DXJzkIN2rgv4YuDfJduB54INt+gPA1cAY8ArwYYCqOprkU8Cjbd4nq2riTenfoXvF0s8BX203SdIApXvKf+npdDo1Ojo67DYkaUlJsq+qOpPrfgJZkmQYSJIMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSRJ9hkOTfJHkqyZNJvpjkdUnWJdmbZCzJPUnOa3PPb+tjbXxtz+Pc2OrPJrmyz69JkjRLcw6DJKuA3wU6VfXLwDJgK3AzcEtVvRk4Bmxvm2wHjrX6LW0eSTa07d4KbAY+k2TZXPuSJM1ev6eJlgM/l2Q58PPAYeC9wH1tfBdwTVve0tZp41ckSavfXVU/rqrvA2PAxj77kiTNwpzDoKoOAf8J+Cu6IfASsA/4UVUdb9MOAqva8irgQNv2eJv/ht76FNucIMmOJKNJRsfHx+fauiRpkn5OE62k+1v9OuCXgAvonuZZMFW1s6o6VdUZGRlZyF1J0lmln9NEvwF8v6rGq+rvgC8B7wBWtNNGAKuBQ235ELAGoI1fCPywtz7FNpKkAegnDP4KuDzJz7dz/1cATwMPAx9oc7YB97fl3W2dNv71qqpW39quNloHrAe+2UdfkqRZWn76KVOrqr1J7gMeA44D3wJ2Av8buDvJH7Xa7W2T24EvJBkDjtK9goiqeirJvXSD5DhwXVW9Ote+JEmzl+4v50tPp9Op0dHRYbchSUtKkn1V1Zlc9xPIkiTDQJJkGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJPoMgyQrktyX5LtJnknya0kuSrInyf52v7LNTZJbk4wleSLJZT2Ps63N359kW79flCRpdvp9ZfBnwF9U1T8EfhV4BrgBeKiq1gMPtXWAq4D17bYDuA0gyUXATcDbgY3ATRMBIkkajDmHQZILgXcDtwNU1U+q6kfAFmBXm7YLuKYtbwHurK5HgBVJLgWuBPZU1dGqOgbsATbPtS9J0uz188pgHTAO/I8k30ryuSQXAJdU1eE25wXgkra8CjjQs/3BVpuufpIkO5KMJhkdHx/vo3VJUq9+wmA5cBlwW1W9DfhbfnZKCICqKqD62McJqmpnVXWqqjMyMjJfDytJZ71+wuAgcLCq9rb1++iGw4vt9A/t/kgbPwSs6dl+datNV5ckDcicw6CqXgAOJHlLK10BPA3sBiauCNoG3N+WdwPXtquKLgdeaqeTHgQ2JVnZ3jje1GqSpAFZ3uf2/xq4K8l5wHPAh+kGzL1JtgPPAx9scx8ArgbGgFfaXKrqaJJPAY+2eZ+sqqN99iVJmoV0T+svPZ1Op0ZHR4fdhiQtKUn2VVVnct1PIEuSDANJkmEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJKYhzBIsizJt5J8pa2vS7I3yViSe5Kc1+rnt/WxNr625zFubPVnk1zZb0+SpNmZj1cGHwWe6Vm/Gbilqt4MHAO2t/p24Fir39LmkWQDsBV4K7AZ+EySZfPQlyRphvoKgySrgX8KfK6tB3gvcF+bsgu4pi1vaeu08Sva/C3A3VX146r6PjAGbOynL0nS7PT7yuC/AB8HXmvrbwB+VFXH2/pBYFVbXgUcAGjjL7X5P61Psc0JkuxIMppkdHx8vM/WJUkT5hwGSd4HHKmqffPYzylV1c6q6lRVZ2RkZFC7laQz3vI+tn0H8P4kVwOvA34R+DNgRZLl7bf/1cChNv8QsAY4mGQ5cCHww576hN5tJEkDMOdXBlV1Y1Wtrqq1dN8A/npV/SbwMPCBNm0bcH9b3t3WaeNfr6pq9a3taqN1wHrgm3PtS5I0e/28MpjO7wN3J/kj4FvA7a1+O/CFJGPAUboBQlU9leRe4GngOHBdVb26AH1JkqaR7i/nS0+n06nR0dFhtyFJS0qSfVXVmVz3E8iSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIk+giDJGuSPJzk6SRPJfloq1+UZE+S/e1+Zasnya1JxpI8keSynsfa1ubvT7Kt/y9LkjQb/bwyOA78XlVtAC4HrkuyAbgBeKiq1gMPtXWAq4D17bYDuA264QHcBLwd2AjcNBEgkqTBmHMYVNXhqnqsLf8N8AywCtgC7GrTdgHXtOUtwJ3V9QiwIsmlwJXAnqo6WlXHgD3A5rn2JUmavXl5zyDJWuBtwF7gkqo63IZeAC5py6uAAz2bHWy16epT7WdHktEko+Pj4/PRuiSJeQiDJL8A/Dnwsap6uXesqgqofvfR83g7q6pTVZ2RkZH5elhJOuv1FQZJzqUbBHdV1Zda+cV2+od2f6TVDwFrejZf3WrT1SVJA9LP1UQBbgeeqao/7RnaDUxcEbQNuL+nfm27quhy4KV2OulBYFOSle2N402tJkkakOV9bPsO4F8C30nyeKv9e+CPgXuTbAeeBz7Yxh4ArgbGgFeADwNU1dEknwIebfM+WVVH++hLkjRL6Z7WX3o6nU6Njo4Ouw1JWlKS7KuqzuS6n0CWJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAksYjCIMnmJM8mGUtyw7D7kaSzyaIIgyTLgE8DVwEbgA8l2TDcriTp7LF82A00G4GxqnoOIMndwBbg6fne0fbPP8rzR1+Z74eVpBlLn9t/5XffyfnLl81LLxMWSxisAg70rB8E3j55UpIdwA6AN77xjXPa0dqLL+B1587vQZSkmSqq78dI33FyssUSBjNSVTuBnQCdTmdOR/Q/vM+zT5I02aJ4zwA4BKzpWV/dapKkAVgsYfAosD7JuiTnAVuB3UPuSZLOGoviNFFVHU9yPfAgsAy4o6qeGnJbknTWWBRhAFBVDwAPDLsPSTobLZbTRJKkITIMJEmGgSTJMJAkAanq/9Nww5BkHHh+jptfDPz1PLYz3+yvP/bXH/vrz2Lv7+9X1cjk4pINg34kGa2qzrD7mI799cf++mN//Vns/U3H00SSJMNAknT2hsHOYTdwGvbXH/vrj/31Z7H3N6Wz8j0DSdKJztZXBpKkHoaBJOnMDoMkm5M8m2QsyQ1TjJ+f5J42vjfJ2gH2tibJw0meTvJUko9OMec9SV5K8ni7/cGg+mv7/0GS77R9j04xniS3tuP3RJLLBtjbW3qOy+NJXk7ysUlzBnr8ktyR5EiSJ3tqFyXZk2R/u185zbbb2pz9SbYNsL8/SfLd9v37cpIV02x7yufCAvb3h0kO9XwPr55m21P+rC9gf/f09PaDJI9Ps+2CH7++VdUZeaP7X2H/JfAm4Dzg28CGSXN+B/hsW94K3DPA/i4FLmvLrwe+N0V/7wG+MsRj+APg4lOMXw18le6fdL0c2DvE7/ULdD9MM7TjB7wbuAx4sqf2H4Eb2vINwM1TbHcR8Fy7X9mWVw6ov03A8rZ881T9zeS5sID9/SHw72bw/T/lz/pC9Tdp/D8DfzCs49fv7Ux+ZbARGKuq56rqJ8DdwJZJc7YAu9ryfcAVSeb/j4tOoaoOV9VjbflvgGfo/i3opWQLcGd1PQKsSHLpEPq4AvjLqprrJ9LnRVV9Azg6qdz7HNsFXDPFplcCe6rqaFUdA/YAmwfRX1V9raqOt9VH6P6VwaGY5vjNxEx+1vt2qv7avxsfBL443/sdlDM5DFYBB3rWD3LyP7Y/ndN+IF4C3jCQ7nq001NvA/ZOMfxrSb6d5KtJ3jrYzijga0n2JdkxxfhMjvEgbGX6H8JhHj+AS6rqcFt+AbhkijmL5Th+hO4rvamc7rmwkK5vp7HumOY022I4fu8CXqyq/dOMD/P4zciZHAZLQpJfAP4c+FhVvTxp+DG6pz5+FfivwP8acHvvrKrLgKuA65K8e8D7P632Z1LfD/zPKYaHffxOUN3zBYvyWu4knwCOA3dNM2VYz4XbgH8A/CPgMN1TMYvRhzj1q4JF/7N0JofBIWBNz/rqVptyTpLlwIXADwfSXXef59INgruq6kuTx6vq5ar6f235AeDcJBcPqr+qOtTujwBfpvtyvNdMjvFCuwp4rKpenDww7OPXvDhx6qzdH5lizlCPY5LfAt4H/GYLrJPM4LmwIKrqxap6tapeA/77NPsd9vFbDvxz4J7p5gzr+M3GmRwGjwLrk6xrvz1uBXZPmrMbmLhy4wPA16f7YZhv7Rzj7cAzVfWn08z5exPvYSTZSPf7NZCwSnJBktdPLNN9o/HJSdN2A9e2q4ouB17qOSUyKNP+RjbM49ej9zm2Dbh/ijkPApuSrGynQTa12oJLshn4OPD+qnplmjkzeS4sVH+970H9s2n2O5Of9YX0G8B3q+rgVIPDPH6zMux3sBfyRvdql+/RvdLgE632SbpPfIDX0T29MAZ8E3jTAHt7J91TBk8Aj7fb1cBvA7/d5lwPPEX36ohHgF8fYH9vavv9duth4vj19hfg0+34fgfoDPj7ewHdf9wv7KkN7fjRDaXDwN/RPW+9ne57UA8B+4H/A1zU5naAz/Vs+5H2PBwDPjzA/sbonm+feA5OXF33S8ADp3ouDKi/L7Tn1hN0/4G/dHJ/bf2kn/VB9Nfqn594zvXMHfjx6/fmf0chSTqjTxNJkmbIMJAkGQaSJMNAkoRhIEnCMJAkYRhIkoD/D52vXGEgIHyZAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.plot(result[[\"open\",\"date\"]][:20])"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"dates = result['date'][:20]"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2006-01-04\n",
"1 2006-01-05\n",
"2 2006-01-06\n",
"3 2006-01-09\n",
"4 2006-01-10\n",
"5 2006-01-11\n",
"6 2006-01-12\n",
"7 2006-01-13\n",
"8 2006-01-16\n",
"9 2006-01-17\n",
"10 2006-01-18\n",
"11 2006-01-19\n",
"12 2006-01-20\n",
"13 2006-01-23\n",
"14 2006-01-24\n",
"15 2006-01-25\n",
"16 2006-02-06\n",
"17 2006-02-07\n",
"18 2006-02-08\n",
"19 2006-02-09\n",
"Name: date, dtype: datetime64[ns]"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dates"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAElCAYAAADjk4nIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqKUlEQVR4nO3dd5xU9fX/8ddhKStdem9SFFDaBlRsiYrEaKyxAkYTMEZNMZpvookmpvqNKSYaDSZqKGINUSNfSzT5GY2AuwQUsIBlabL0zsKW8/vj3iXDugvLzs7Mnbnv5+Mxj5259+7e952dOXPnM3fONXdHRETio1GmA4iISHqp8IuIxIwKv4hIzKjwi4jEjAq/iEjMNM50gJp06NDB+/Tpk+kYIiJZo6ioaIO7d6zLspEs/H369KGwsDDTMUREsoaZFdd1WQ31iIjEjAq/iEjMqPCLiMSMCr+ISMyo8IuIxIwKv4hIzKjwi4jEjAq/iEgEPLd4LT94egllFZUpX1ckv8AlIhIn76zdxg2PLWRA51ZUVDpN8lK7Pu3xi4hk0Oade5k8rZCWzRozdeIo8lNd9dEev4hIxpRXVHLdrAWUbN3DI1cfS+fW+WlZrwq/iEiG/Oz/3uG15Rv53wuPYWSvw9O2Xg31iIhkwBNFq/jTqx9y5dg+XFTQM63rVuEXEUmz/6zYzM2z3+L4I9pzy5lHpX39KvwiImlUsq2Uq6cX0bl1M+65bCSN89JfhlX4RUTSpLSsgqunF7FjTzn3Tyrg8BZNM5JDH+6KiKSBu/O9vy5m4cot3DdhJEd2aZ2xLNrjFxFJg4f+/RFPFK3i66cOYPzQrhnNosIvIpJiry3fwI+ffZtxgzvz9VMHZDqOCr+ISCqt2LiLax9ewBEdW/Cri4fTqJFlOpIKv4hIquzcU87kaYW4w/2TCmjZLBofqx40hZk9AJwFrHP3oeG0R4FB4SJtgS3uPryG3/0I2A5UAOXuXtAgqUVEIq6y0rnhsYUsW7edaVeNoXf7FpmOtE9dXn4eAu4GplVNcPeLq66b2S+BrQf4/U+7+4b6BhQRyUa/fXkZzy8p4ftnDeaEAR0yHWc/By387v6KmfWpaZ6ZGXAR8JkGziUikrWeW7yW3/x9GReM7MFVY/tkOs4nJDvGfyJQ4u7LapnvwAtmVmRmUw70h8xsipkVmlnh+vXrk4wlIpIZVb31h/Vsy0/OG0qwfxwtyRb+S4FZB5h/gruPBD4LXGtmJ9W2oLtPdfcCdy/o2LFjkrFERNIvE73166Pehd/MGgPnA4/Wtoy7rw5/rgNmA6Pruz4RkShL7K1/38RRaeutXx/J7PGfBrzj7qtqmmlmLcysVdV1YBywOIn1iYhE1k/nBL31f3r+0WntrV8fBy38ZjYLeB0YZGarzOxL4axLqDbMY2bdzGxOeLMz8KqZLQLmA8+6+3MNF11EJBoeL1zJA699yFVj+3LhqB6ZjnNQdTmq59Japn+xhmlrgDPD6x8Aw5LMJyISaf9ZsZlbZi9mbP/23HzmkZmOUyf65q6ISD1V9dbv0iafuy/NTG/9+siOlCIiEROV3vr1EY3GESIiWcTduWV2VW/9UQzq0irTkQ6J9vhFRA7Rg699xJMLVvGN0wYwfmiXTMc5ZCr8IiKH4NVlG/jJnLc5Y0hnvvaZzPfWrw8VfhGROireuHNfb/1fXhSN3vr1ocIvIlIHO8Le+hCt3vr1ocIvInIQlZXOtx5byPJ1O7jnspGR6q1fH9n7kiUikiKVlc7mXXtZu62Uddv28NI7JZHtrV8fKvwiEhvuzvY95azbVkrJtj2s3VpKyfaguJdsK91X6NdtL6Wswvf73Us+1TOSvfXrQ4VfRHJCaVkFJWFBD36W7nd73fag0O8uq/jE77bOb0zn1vl0bp3PmH4t6BJe79y6GZ1a59OldT5d2+RHsrd+fajwi0iklVVUsmHHnn176Ou2l9ZQ4PewdXfZJ363WeNGdGkTFPGh3dtw6pGdgoLeJp/OrZrRuXU+nVo3o3nTeJXCeG2tiERGZaWzadfeYG88YailZNueYChmeylrt+5h4849+P6jLjRuZHRqFeyN9+3QgmP7td+3x965dbN911vnN86ZvfSGpMIvIg0qcRx97dZwrzwcR08cU69pHB2gQ8umdGqVT5c2+RzdvQ2dWgVFvEubZvuut2/RNGuPoY8CFX4RqbODjaNXXa/vOHqHls1o2lhHmaeaCr+I7BtHX7s1HGoJx9HXbt2z35j6AcfRW+VzdI+2nBaOncd9HD3K9J8QyWHVx9HXJuyVr0sYU9c4erwctPCb2QPAWcA6dx8aTvsBMBlYHy52s7vPqeF3xwN3AXnAH9395w2UWyTWqsbRS7YmDLNsL/3v7UMYRz+mh8bR46Yue/wPAXcD06pN/7W731nbL5lZHnAPcDqwCnjDzJ5296X1zCoSC4nj6MEXikpruF3zOHqr/Mb7xs7H9GsRFHONo0s1dTnn7itm1qcef3s0sDw89y5m9ghwDqDCL1KL6a9/xA+eWUpF5f576bWNo3dq3Wxfodc4utRVMo+S68xsElAIfMvdN1eb3x1YmXB7FTCmtj9mZlOAKQC9evVKIpZIdnp12QZ+8MxSjj+iPecM765xdEmZ+hb+e4EfAR7+/CVwVTJB3H0qMBWgoKDgk4OSIjmsqs97/44tuXfCqKxu+SvRV6+BPncvcfcKd68E7icY1qluNdAz4XaPcJqIJKjq826W/X3eJTvUq/CbWdeEm+cBi2tY7A1ggJn1NbOmwCXA0/VZn0iuqqx0bnh0Ie+v38k9l42kV/vmmY4kMVCXwzlnAacAHcxsFXAbcIqZDScY6vkIuDpcthvBYZtnunu5mV0HPE9wOOcD7r4kFRshkq3uemkZLywt4dazBjO2f/b3eZfsUJejei6tYfKfall2DXBmwu05wCeO7xcReG7xx9z10jK+MKoHV+ZIn3fJDjqYVyQD3lm7jRseW8SIXm358XlDdcSOpJUKv0iabd65l8nTCmmV35g/TBhFs8Z5mY4kMaPDB0TSqLyikmsfXkDJtj08dvVxdGqdn+lIEkPa4xdJox8/+zb/fn8jPzvvaIb3bJvpOBJTKvwiafJY4Uoe+vdHXDW2LxeM6pHpOBJjKvwiabBgxWa+N3sxJ/TvwM1nHpnpOBJzKvwiKVayrZSvTC+iS5t87r5sBI3z9LSTzNIjUCSFSssqmDK9iJ17yvnjFQW0bd4005FEdFSPSKq4O7fMXsyilVv4w8RRDOzcKtORRADt8YukzAOvfcSTC1bxzdMGcsaQLpmOI7KPCr9ICry6bAM/eXYp44d04frP9M90HJH9qPCLNLCq3voDOrXilxcN03lrJXJU+EUaUPXe+i3UW18iSI9KkQZSkdBbf9pVo9VbXyJLhV8kSeu37+GxwpU8PG8Fq7fsVm99iTwVfpF6cHfmfbiJGXOLeX7JWsoqnLH923Pr2YMZN7hzpuOJHJAKv8gh2FZaxl+KVjFz3gqWrdtBm8OaMOm4Plw2phdHdGyZ6XgidVKXUy8+AJwFrHP3oeG0XwBnA3uB94Er3X1LDb/7EbAdqADK3b2gwZKLpNHi1VuZMbeYpxauYXdZBcN6tuUXFx7D2cO6kd9E/fQlu9Rlj/8h4G5gWsK0F4HvhufVvQP4LvA/tfz+p919Q1IpRTKgtKyCZxatYca8FSxauYX8Jo04d3h3Lh/Tm6N7tMl0PJF6q8s5d18xsz7Vpr2QcHMucGED5xLJmA/W72DmvBU8UbSKrbvL6N+pJbedPZjzR/agzWFNMh1PJGkNMcZ/FfBoLfMceMHMHPiDu0+t7Y+Y2RRgCkCvXr0aIJZI3ZVVVPL3pSXMmFfMa8s30riRccbQLkwY05tj+7XTOXElpyRV+M3sFqAcmFnLIie4+2oz6wS8aGbvuPsrNS0YvihMBSgoKPBkconU1cdbdzNr/koemb+Cddv30L3tYdw4biAXfaonnVrptIiSm+pd+M3siwQf+p7q7jUWandfHf5cZ2azgdFAjYVfJF0qK51/Ld/AzLnFvPTOOirdOXlgR346pjefPrITeWqxIDmuXoXfzMYD3wZOdvddtSzTAmjk7tvD6+OA2+udVCRJm3bu5fHClTw8fwXFG3fRvkVTJp/Yj8vH9KJnO33LVuKjLodzzgJOATqY2SrgNoKjeJoRDN8AzHX3r5hZN+CP7n4m0BmYHc5vDDzs7s+lZCtEDuKefyznrpeWsbe8ktF92nHD6QMZP7QLzRrrUEyJn7oc1XNpDZP/VMuya4Azw+sfAMOSSifSAJ5auJpfPP8u44d04ZunD2RQF50QReJN39yVnPbWqq18+4k3Gd23Hb+7bARNdL5bEbVllty1fvsepkwvpEPLZtx7+UgVfZGQ9vglJ+0pr+CaGUVs3rWXJ685nvYtm2U6kkhkqPBLznF3bntqCYXFm7n7shEM6ab2CiKJ9N5Xcs6MucU88sZKrv30EZx1TLdMxxGJHBV+ySmvv7+RHz6zlFOP7MS3Th+U6TgikaTCLzlj5aZdXPvwAnq3b86vLxmuk5yL1EKFX3LCrr3lTJleRFlFJfdPKqB1vrpoitRGhV+ynrtz0xNv8u7abfzu0hH005mwRA5IhV+y3u//+T7Pvvkx3x5/JKcM6pTpOCKRp8IvWe3vS0u484V3OWd4N64+qV+m44hkBRV+yVrL123nG48uZEi31txxwTE6WYpIHanwS1bauquMydOKyG/SiKkTC3TCc5FDoG/uStapqHSuf+Q/rNq8i4cnH0u3todlOpJIVlHhl6xzx3Pv8Mp76/nZ+UfzqT7tMh1HJOtoqEeyyuz/rGLqKx8w8djeXDq6V6bjiGQlFX7JGm+u2sL/PPkWo/u249azB2c6jkjWqlPhN7MHzGydmS1OmNbOzF40s2Xhz8Nr+d0rwmWWmdkVDRVc4mXd9lKmTCuio3rriyStrs+eh4Dx1aZ9B3jJ3QcAL4W392Nm7QjO0TsGGA3cVtsLhEhtgt76C9iyey9TJ41Sb32RJNWp8Lv7K8CmapPPAf4cXv8zcG4Nv3oG8KK7b3L3zcCLfPIFRKRWVb31i4o3c+cXhqm3vkgDSOb9cmd3/zi8vhboXMMy3YGVCbdXhdM+wcymmFmhmRWuX78+iViSS6aHvfW/eop664s0lAYZKHV3BzzJvzHV3QvcvaBjx44NEUuyXGJv/RvHqbe+SENJpvCXmFlXgPDnuhqWWQ30TLjdI5wmckArN+3iqzOL6NuhBb9Rb32RBpVM4X8aqDpK5wrgqRqWeR4YZ2aHhx/qjgunidRq195yJk8rpKLSuX9SAa3UW1+kQdX1cM5ZwOvAIDNbZWZfAn4OnG5my4DTwtuYWYGZ/RHA3TcBPwLeCC+3h9NEauTu3Pj4It4r2c7vLhtJ3w4tMh1JJOfUqWWDu19ay6xTa1i2EPhywu0HgAfqlU5i555/LGfOW2u5+cwjOXmgPusRSQV9C0Yi48WlJdz5wnucO7wbk09Ub32RVFHhl0hYVrKdbz66kKO7t+Hn6q0vklIq/JJxQW/9QvKb5DF10ij11hdJMRV+yaiq3vqrt+zmvgkj6dpGvfVFUk39+CWjqnrr//z8oylQb32RtNAev2RMVW/9K47rzSXqrS+SNir8khFVvfWP7deO752l3voi6aTCL2mX2Fv/95ePUm99kTTTGL+kVVVv/a27y3jymuNp16JppiOJxI4Kv6SNu3PrX4Pe+vdcNpLB3VpnOpJILOk9tqTN9LnFPFq4kus+3Z/PHdM103FEYkuFX9Kiqrf+aUd14obTB2Y6jkisqfBLyiX21v/1xeqtL5JpKvySUjv3qLe+SNTow11JiRUbdzFzfjGPF65iy669PHjlaPXWF4kIFX5pMBWVzsvvrGPG3GJeWbaeRmacdlQnrhrblzH92mc6noiEVPglaeu2l/Lo/JXMmr+CNVtL6dy6GV/7zAAuHd2LLm3yMx1PRKqpd+E3s0HAowmT+gG3uvtvEpY5heBcvB+Gk/7i7rfXd50SHe7O6x9sZObcFTy/ZC3llc4J/Ttw69mDOfWozvo2rkiE1bvwu/u7wHAAM8sDVgOza1j0X+5+Vn3XI9GydXcZTxatYua8Yt5fv5M2hzXhi8f34bIxvejXsWWm44lIHTTUUM+pwPvuXtxAf08i5s1VW5gxt5inF62htKyS4T3bcucXhnHWMV114hSRLNNQhf8SYFYt844zs0XAGuBGd19S00JmNgWYAtCrl1r0RsHuvRU8s2gNM+YV8+aqrRzWJI/zRnTn8jG9Gdq9TabjiUg9mbsn9wfMmhIU9SHuXlJtXmug0t13mNmZwF3uPuBgf7OgoMALCwuTyiX1t3zdDmbOK+bJolVsKy1nQKeWTDi2N+eN7E5rHYcvEklmVuTuBXVZtiH2+D8LLKhe9AHcfVvC9Tlm9nsz6+DuGxpgvdKAyioqeWFJCTPmFvP6BxtpkmeMH9qVCWN6MbpvO538XCSHNEThv5RahnnMrAtQ4u5uZqMJvim8sQHWKQ1kzZbdzJq/gkfeWMn67Xvo3vYwbjpjEBcV9KRjq2aZjiciKZBU4TezFsDpwNUJ074C4O73ARcC15hZObAbuMSTHVuSBlFZ6dw8+y0eK1yJA6cM7MjE43pz8sBO5KmXjkhOS6rwu/tOoH21afclXL8buDuZdUhq/OrF93jkjZVccVxvvnxiP3q2a57pSCKSJvrmbgz97c013P2P5Vw6uic/+PwQjd+LxIy+XhkzS9Zs5abH36Sg9+H88PNDVfRFYkiFP0Y27tjDlGlFtG3ehHsnjKJpY/37ReJIQz0xUVZRyVdnLmDDjj08/pXjdMSOSIyp8MfE7c8sZd6Hm/jNxcM5pkfbTMcRkQzSe/0YeHjeCqbPLebqk/px7ojumY4jIhmmwp/j3vhoE7c9vZiTB3bk2+OPzHQcEYkAFf4ctmbLbq6ZUUSPw5vz20tG6ItZIgJojD9nlZZVMGV6IaVllTwyZRRtmqu5mogEVPhzkLvzP0++yZI127h/YgH9O7XKdCQRiRAN9eSgqa98wFML13DjuEGcNrhzpuOISMSo8OeYf767jp8/9w6fO7orXz3liEzHEZEIUuHPIR+s38H1s/7DkV1a84svHKN2DCJSIxX+HLG9tIzJ0wppkteIqRNH0bypPr4RkZqp8OeAykrnG48spHjjLn5/+Ui1WBaRA1LhzwG/evE9XnpnHbedPZhj+7U/+C+ISKyp8Ge5xN76E47tnek4IpIFki78ZvaRmb1lZgvNrLCG+WZmvzWz5Wb2ppmNTHadElBvfRGpj4b6BPDT7r6hlnmfBQaElzHAveFPSYJ664tIfaWjWpwDTPPAXKCtmXVNw3pzVmJv/T9MHKXe+iJySBqi8DvwgpkVmdmUGuZ3B1Ym3F4VTtuPmU0xs0IzK1y/fn0DxMpdP/pb0Fv/jguOUW99ETlkDVH4T3D3kQRDOtea2Un1+SPuPtXdC9y9oGPHjg0QKzfNmr+Caa+rt76I1F/Shd/dV4c/1wGzgdHVFlkN9Ey43SOcJofojY82cetT6q0vIslJqvCbWQsza1V1HRgHLK622NPApPDonmOBre7+cTLrjSP11heRhpLsUT2dgdnhYYSNgYfd/Tkz+wqAu98HzAHOBJYDu4Ark1xn7Ozeq976ItJwkir87v4BMKyG6fclXHfg2mTWE2fuznf+ot76ItJwdPB3xKm3vog0NBX+CFNvfRFJBRX+iKrqrX+UeuuLSANT4Y+gbYm99Sept76INCwV/oipqNZbv8fh6q0vIg1LhT9ifvXiu7z8zjpu+/wQ9dYXkZRQ4Y+QZxat4Z5/vM+lo3sxYUyvTMcRkRylwh8Ri1dv5aYnFoW99Yfow1wRSRkV/gjYsGMPV08v4vDmTdVbX0RSToeLZNje8kq+OiPorf/EV45Xb30RSTkV/gy7/W9LmP/RJu66ZDhH92iT6TgiEgMaU8igmfOKmTF3BVef1I9zhqu3voikhwp/hsz/cBO3PbVEvfVFJO1U+DNg9ZbdfHVmET3bqbe+iKSfxvjT6O2PtzFjbjF//c9qzEy99UUkI1T4U6y0rIL/W/wxM+auoKh4M80aN+KsY7ox+aS+6q0vIhmhwp8ixRt38vC8FTxWuJLNu8ro26EF3/vcUVw4qgdtmzfNdDwRibF6F34z6wlMIzj9ogNT3f2uasucAjwFfBhO+ou7317fdUZdeUUlL7+zjhnzVvDKe+vJa2ScflRnJhzbm+OPaE8jjeWLSAQks8dfDnzL3ReEJ1wvMrMX3X1pteX+5e5nJbGeyFu3rZRH3ljJrPkr+HhrKZ1bN+Mbpw3gkk/1okub/EzHExHZT70Lv7t/DHwcXt9uZm8D3YHqhT8nuTuvv7+RGfOKeWFJCeWVzokDOnDb2UM47ahONM7TAVMiEk0NMsZvZn2AEcC8GmYfZ2aLgDXAje6+pJa/MQWYAtCrV3Q7U27dVcYTC1Yxc14xH6zfSdvmTbhybB8uG9Obvh1aZDqeiMhBJV34zawl8CTwDXffVm32AqC3u+8wszOBvwIDavo77j4VmApQUFDgyeZqaItWbmHG3GKeeXMNpWWVjOjVll9+YRifO6Yr+U3yMh1PRKTOkir8ZtaEoOjPdPe/VJ+f+ELg7nPM7Pdm1sHdNySz3nTZvbeCpxetZsbcFby1eivNm+Zx3ogeXD6mF0O7q6+OiGSnZI7qMeBPwNvu/qtalukClLi7m9logm8Kb6zvOtNl+brtzJi7gicXrGJ7aTkDOrXk9nOGcO6I7rTO1xeuRCS7JbPHPxaYCLxlZgvDaTcDvQDc/T7gQuAaMysHdgOXuHvkhnGq7NxTzrUPL+Cf766nSZ4xfmhXJozpxei+7XRiFBHJGckc1fMqcMBq6O53A3fXdx3pVFnp3PDYQl55bz3fOn0gl4zupd74IpKT9M3d0G9fXsbzS0r4/lmD+dIJfTMdR0QkZXSwOfDc4rX85u/LuGBkD64a2yfTcUREUir2hf+dtdu44bGFDOvZlp+cN1Rj+SKS82Jd+Dfv3MvkaYW0bNaYqRNH6Xh8EYmF2I7xl1dUct2sBZRs3cMjVx9L59bqqSMi8RDbwv/TOe/w2vKN/O+FxzCy1+GZjiMikjaxHOp5vHAlD7z2IVeO7cNFBT0zHUdEJK1iV/j/s2Izt8xezNj+7bnlzKMyHUdEJO1iVfhLtpVy9fQiurTJ5+5LR6p1sojEUmwqX2lZBVOmF7FjTzn3Tyrg8BY6/aGIxFMsPtx1d26ZvZhFK7dw34RRDOqik5yLSHzFYo//gdc+4skFq/jGaQMYP7RLpuOIiGRUzhf+V5dt4CfPLuWMIZ352mdqPAeMiEis5HThL964k2sfXsCATq345UXDadRI7RhERHK28O/YU87kaYWYwf2TCmjZLBYfZ4iIHFROVsPKSueGRxfy/vqdTLtqNL3aN890JBGRyMjJPf67XlrGC0tLuOXMoxjbv0Om44iIREpShd/MxpvZu2a23My+U8P8Zmb2aDh/npn1SWZ9dfHc4o+566VlXDiqB1eqt76IyCfUu/CbWR5wD/BZYDBwqZkNrrbYl4DN7t4f+DVwR33XVxdBb/1FDOvZlh+fq976IiI1SWaPfzSw3N0/cPe9wCPAOdWWOQf4c3j9CeBUS1E13rq7TL31RUTqIJkPd7sDKxNurwLG1LaMu5eb2VagPbCh+h8zsynAFIBevXodcpiWzRpzzrDufOaoTuqtLyJyAJE5qsfdpwJTAQoKCvxQfz+vkXHjGYMaPJeISK5JZqhnNZDYzL5HOK3GZcysMdAG2JjEOkVEJEnJFP43gAFm1tfMmgKXAE9XW+Zp4Irw+oXAy+5+yHvzIiLScOo91BOO2V8HPA/kAQ+4+xIzux0odPengT8B081sObCJ4MVBREQyKKkxfnefA8ypNu3WhOulwBeSWYeIiDSsnPzmroiI1E6FX0QkZlT4RURiRoVfRCRmLIpHV5rZeqA4RX++AzV8czgDlGN/yhGtDJC+HFHY3ihkgORy9Hb3jnVZMJKFP5XMrNDdC5RDOaKaIwoZ0pkjCtsbhQzpzKGhHhGRmFHhFxGJmTgW/qmZDhBSjv0px39FIQOkL0cUtjcKGSBNOWI3xi8iEndx3OMXEYk1FX4RkZhR4ZesYmZ6zIokSU+iiKp+buJUnas427h7ZaYzSM30GE29hqoLKvzVmFlrMxuW6RyAAZhZNwB390zs7ZpZEzPrYGZD073uajl6mtlrZnZ0JnNEgZkdbmbjMl1ozayxmeWb2UDY9xjNyeKfa3UhMufcjZDfA68Ai6rPMLNGadzj/JmZ5QE9zcyBm9x9ZZjD0ngms98RPNiONbNfu/tDVTPSfH98H2gHXGhmy919d5rXj5mNB1YB77p7WbrWW4PfAvPd/YXqM9J8n/wW2AOMNrNy4JvuviDM0SCPUTMbBSx3963J/q0k5VZdcHddwgtwEvB6wu3jgS8DX09zjpOBeUB/oAvwKrAV+HGac5wCvA50BMYBvwAmArcSHgqcxv/Lv4EhwN+AezLw2DgNqAR+RXAa0d7pzpDw2Eh8jI4neFH8WZr/JycAc4HDwtvPAeuBXzTgOk4P7/NfAwVAswzd5zlXFzTUs7/rgA8AzOxi4HaCO/kEM3vMzFqkKcdo4Cl3X+7ua4E7CQrOEWY2OU0ZAK4E7nL39QT3w0SCJ+KngIVmVqeGUA3gm8Cv3H0JcD3Qz8y+Gw5DWZqGF04mKK6LgfOAL5vZ6VX3gZmdEP5MdZargN1m1sLMLgK+DWwGjgbeMLMOKV5/lSHAa+6+O7z9U2A60N/M7migdXyO4D7fRPAcuMHM+ptZY9j3biAdcq8uZOIVNIoX4DBgCsFe7R3AamB4OK8t8Gegf5qyjAUKCfa4OwIvAWcBw4BpQIs0ZGgKnBJeN4In4LCE+fcBBWnI0RK4LLzeKPx5IvA08Pk0/T8aAQOBjuHtAcCPCArdVQSF4O005GhCsBf8XeCPwBZgVML8qcDINN0ngwjOt30ucGz4GD07fB49ALRvgG09HugU3h4R3t9zwufC1cA/07CdOVkXUh422y5AH+Am4IfVpr8BfCqNOSYC74cP9t8kTH8VGJCB+6VztdvzgbFpzmAJ1y8P758rSeMQR7U8xxOMc+8AxqVxve0IzmX99WrT30jn/4Tgnc8/w/vghwnT5wFHp2idZxEM9+0FzkjjtuZUXdCHu4CZnQEcAWwH1rj7L6rNvwn4wN3fSEOOfgSFZKm7H1Ft/veBne6+LJU5qq0zz90r3L0kYdq3gQ/d/bV056j6AMvdZ5rZYQRjzCn7oNvMTiHYu90MLHD35WbW2N3L3f3f4Qe+NX7QmoIcRxIMe7zm7o+bWZuE+Wn5nyTcH5uAZ4G/Eoy9l4bzbwO2uvtbSazjDKAvsAvY7u6zq+a5+9/MbHS4zufru45DyJGTdSH2Y/xmdiTwS4Ixu77AlWY2w8xODOd3Jfhw53/SlGMAwT/5W2Y23cxODue3Jxh++XKKcwwys/fMbCJAWGwbVR0yZmZHELy1/HYmcrD/Y/Zxgre4qcowkGAMdRTBEMtlYZbycH4ewR7fpFRlqJZjJMGH7JPDHFvD+d0IHjc3pSnHKOAM4Dvhi3BV0T+c4CQiVyWxjqrnwUCgN3CumT2c8HzMIziyqt7rOMQcuVkX0vUWJaoX4OfAT8Pr7Qj+0dcRFJQTwuldM5Tj+jDH2HB66zTkmEUwdriEoKiNqja/EdAyAjnScV88DlwTXj+KYHz19IT5TVOd4QA5xlVbJh3/kwPmAPJIctitjs/H/DRsa07Xhdjv8RN8QNXfzFq7+yZ3Xw48CrwJTAzf1n+coRyPhDkmhUMd21IZwMxaERy1cqG7DwH+AvzdzB4N53cDfuLuOzKcoyup39PqDDjBiw/u/jbwGMGHmZjZCFL87usgOc4J5480s2vT8D85aA7gag8rURIO9HycED4PSpNcR7I5sr8upPoVK+oXgr2U+wmOV7+s2rx/AcfEMEebhNstCT5I2kgw1jklLjmANkCrhNs9gWfC63OACWm6L2KTI2LPg5zNEet+/InfdDOzC4CLCQ7RehDoQXBHj4hjjvB2Ew+/oWpmPyF4W/+pOOSoIUNToBy4l+DLM+7u56YyQ9xyRPF5kKs5Yn1UT8Kdau7+pJnNJzgm+UrgH8AXY5qj6ivoleHtPIKjG74Vlxw1ZHB3rzSztwg+XB2T6gxxyxHB50Hu5kjH25UoX9j/2PDvAHlxzlEt03eAbuH1QXHOEWZoBzQHrsjwfZGzORIf9xl+PuZ0jlh+uGuBvGrTvkbwTdSKOOcws6ruf9eHOdYAuPu7cchxkAyb3H2Xu/85lRnilMP+e5hwCwgO2w1vp/V5ELccsSv8ZnakByrCB3RVb5WhBIdO7bvzY57j6IQcebX+gRzKEYUMMczxXTN7BLjFzI4L/2Yj0vw8iF2OTLx9ydQFmEAwXvx/ZKi7onJEM0cUMsQtB8GHlf+P4EtpPwzX1SED2xq7HHHb4z+f4AFdBLxlZr+tevsK+45FVo545ohChrjl+AZwu7u/4O63ASXAZxLWcURtv9jAYpcjNoXfglaufwb+n7t/j+Ct00CgxMzON7MJpOcLOcoRsRxRyBC3HGbWEngC+ChcHwR7u5eE879E2CIjlWKbI91vZ6J2IWjxu4ywz7xyKEeUMsQpB9AeeIqgCVwR1dp0pHE7cz5HLI7jt6Cb37EEvUXKgDfdfY+Zmbv/y8z+QtB3I9Vd9pQjYjmikCFuOcJ1jCEoZvvW4e4bzexN4EVgursXJb1BylGjnC/8FrSR/R3wGnAcsAY40cxecPfFZtaO4H64XjnilSMKGeKWo9o6jk9Yx8vuvhB4B+hGcOKTlIl7jpxv2WBm9wLz3P0hC06TdzLB+TtLCbre7TWzZu6+RznilSMKGeKW4yDruN2DbwP3dvfi5LdIOWqVibGrdF6ArxKcCLpHwrRBBB+kPEiaTuCsHNHLEYUMcctxkHU8RPpaXcc6R87v8QOY2Z3AHoL+Fq+4+95w+rPAFz04mbhyxDBHFDLELccB1jGHoP1Dprc153PkdOG3sKGUmR0DfI7gBMU7CM5Z2Y3gZN3HKUf8ckQhQ9xyxGlbo54jpwt/Igt6X4wjOETqQoKjFv7o7h8pR7xzRCFD3HLEaVsjmSMd41iZvACNEq5fTDhmRpq77SlH9HJEIUPccsRpW6OcI+e+uWvBSbr72X+bR1V1u7sDONvD8TNPcbc95YhejihkiFuOOG1rNuXIucJPcELo46ruOHcvN9vXY+T7kLYue8oRvRxRyBC3HHHa1qzJkVNf4DKzScAad58ZvqJeBHQieIGb5e4fWnBy4lS/qitHxHJEIUPccsRpW7MpB+TeHv9GgkOiIHj1vBDoSvCByecg9W+hlCOyOaKQIW454rSt2ZQjtz7cBQYDiwjOyfpkwvSRwLPAYOWIZ44oZIhbjjhtazblcM+xD3fdfSlwDdAPGBS+tcLdFxC8sm5SjnjmiEKGuOWI07ZmUw7IkTF+MxtG0N3ubWB+OHkn8EUzuwTYDLzs7muVI145opAhbjnitK3ZlGM/6XprkcK3TxcAbxKcj3IpcD/BWWvaAIeH84coR/xyRCFD3HLEaVuzKccncqV7hSm4Y/8KfDa8ngfcSPAByu3KEe8cUcgQtxxx2tZsylH9krVj/AnHvr4FfNbMOrl7hbvfCVwJHG9mP1CO+OWIQoa45YjTtmZTjtpkbeH38CWU4K1TPnCGmXUzs3wP+ltMAoaaWXPliFeOKGSIW444bWs25ahN1jZps+DbbR2BDcDRBMfFbgLmAOXAScAR7n6+csQrRxQyxC1HnLY1m3LUJiuP6rGgjenPCE5TNhS4z90vMLOLCU4I3R7YC0xWjnjliEKGuOWI07ZmU44DyuQHDPW9AM8DXwe6ACcAC8LLiIRlUt5lTzmilyMKGeKWI07bmk05Dpgxkyuv5516OPAUMLra9CuBV4DjlSOeOaKQIW454rSt2ZTjYJes+3DX3TcT3LFXmll+wvQHgUeATytHPHNEIUPccsRpW7Mpx8FkVeG3oI/1ycBCgg9Ois3suoRF8oBRyhG/HFHIELcccdrWbMpRF1lzVI+ZdQUeA5zgQ5N7gS3Ag8A2guNlTwUuc/eFyhGfHFHIELcccdrWbMpRZ5keazqEsbMHgZvD658HlgNtw9snA6MJDo9SjpjliEKGuOWI07ZmU466XrJiqMfMugN9gOkA7v408BzwtXCRxQR38vvKEa8cUcgQtxxx2tZsynEosqLwu/tq4HqCLnZVHgQGhdcfILjjlSNmOaKQIW454rSt2ZTjUGTTGL95GNbMmgCHAVMJ3lKNdvdxyhHPHFHIELcccdrWbMpRV1nzzV1PeIVy9zKgzMzWADcTtDlVjpjmiEKGuOWI07ZmU466yprCX4upwG53/6dyKEcEM8QtR5y2NZtyfELWDPXUxswauXulcihHFDPELUectjWbclSX9YVfREQOTVYc1SMiIg1HhV9EJGZU+EVEYkaFX0QkZlT4RURi5v8DFhaYQjy+EPUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.xticks(rotation=60)\n",
"plt.plot(dates,np.arange(20))"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"data = {'series1':[1,3,4,3,5],\n",
" 'series2':[2,3,5,2,4],\n",
" 'series3':[3,2,3,1,3]}\n",
"df = pd.DataFrame(data)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" series1 | \n",
" series2 | \n",
" series3 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
"
\n",
" \n",
" 1 | \n",
" 3 | \n",
" 3 | \n",
" 2 | \n",
"
\n",
" \n",
" 2 | \n",
" 4 | \n",
" 5 | \n",
" 3 | \n",
"
\n",
" \n",
" 3 | \n",
" 3 | \n",
" 2 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 4 | \n",
" 3 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" series1 series2 series3\n",
"0 1 2 3\n",
"1 3 3 2\n",
"2 4 5 3\n",
"3 3 2 1\n",
"4 5 4 3"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df "
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"x = np.arange(5)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 2, 3, 4])"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAD8CAYAAAC8TPVwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABAIklEQVR4nO3dd1hU19bA4d8GsWFX7EbBLnax19ii0ZhmTawYUWP6pyn3plxNcq+5KTdVUSMo9mg0JiYx9o4NK9hRUbCAKE06s78/jqZZKM7MmYH1Pg9PVM6cs2Yiy3322XstpbVGCCGEc3AxOwAhhBA5J0lbCCGciCRtIYRwIpK0hRDCiUjSFkIIJyJJWwghnEi2SVspVV8pdehPXwlKqVfsEJsQQoi/UblZp62UcgWigLZa6wibRSWEEOKucjs90gMIl4QthBDmKJTL44cCS+72DaWUH+AH4O7u3qpBgwYPGJoQQhQcISEh17TWHtkdl+PpEaVUYeAS4K21vnq/Y318fPT+/ftzdF4hhBCglArRWvtkd1xupkf6AgeyS9hCCCFsJzdJexj3mBoRQghhHzlK2kopd6AXsNK24QghhLifHD2I1FrfBMo/yIUyMjKIjIwkNTX1QU6TLxUtWpTq1avj5uZmdihCCAeX29UjeRYZGUnJkiWpVasWSil7Xdbhaa2JjY0lMjIST09Ps8MRQjg4u21jT01NpXz58pKw/0YpRfny5eUORAiRI3atPSIJ++7kcxFC5JQUjBJCCCciSTsH/P39CQoKyvXrYmNjefjhhylRogQvvPCCDSITQhQ0dnsQ6awyMzOZMGFCnl5btGhR3n//fUJDQwkNDbVyZEKIgqjAJO2bN28yePBgIiMjycrK4p133qFOnTq89tprJCUlUaFCBebNm0eVKlXo1q0bzZs3Z8eOHQwbNozExERKlCjB5MmTCQ8PZ9KkScTExFC8eHHmzJlDgwYNWL58OVOnTsXV1ZXSpUuzbds23N3d6dSpE2fOnDH77Qsh8glTkvbUn8I4dinBqudsVLUU7z3mfc/vr127lqpVq/Lzzz8DEB8fT9++fVm9ejUeHh4sW7aMf/7znwQEBACQnp7O7fop//rXv34/j5+fH/7+/tStW5c9e/bw/PPPs2nTJqZNm8Zvv/1GtWrViIuLs+p7E0KI2wrMSLtJkyb83//9H2+88Qb9+/enbNmyhIaG0qtXLwCysrKoUqXK78cPGTLkjnMkJSWxa9cuBg0a9PufpaWlAdCxY0dGjx7N4MGDeeqpp2z8boQQBZUpSft+I2JbqVevHgcOHOCXX37h7bffpnv37nh7exMcHHzX493d3e/4M4vFQpkyZTh06NAd3/P392fPnj38/PPPtGrVipCQEMqXf6BNpEIIcYcCs3rk0qVLFC9enOHDhzNlyhT27NlDTEzM70k7IyODsLCw+56jVKlSeHp6snz5csDYzXj48GEAwsPDadu2LdOmTcPDw4OLFy/a9g0JIQqkAjM9cvToUaZMmYKLiwtubm7MnDmTQoUK8dJLLxEfH09mZiavvPIK3t73vwtYtGgREydO5IMPPiAjI4OhQ4fSrFkzpkyZwunTp9Fa06NHD5o1awZArVq1SEhIID09nR9++IF169bRqFEje7xlIUQ+lKsekTl1tyYIx48fp2HDhla/Vn4hn48QBZstmiAIIYQwmSRtIYRwIpK0hRDCiUjSFkIIJyJJWwghnIgkbSGEcCKStHMgr6VZ169fT6tWrWjSpAmtWrVi06ZNNohOCFGQFJjNNXn1IKVZK1SowE8//UTVqlUJDQ3lkUceISoqysoRCiEKkgKTtM0ozdqiRYvfr+/t7U1KSgppaWkUKVLExE9CCOHMcpS0lVJlgG+BxoAGfLXWd6+0lBO/vglXjub55XdVuQn0nX7Pb5tdmvX777+nZcuWkrCFEA8kpyPtL4C1WuuBSqnCQHEbxmQTZpZmDQsL44033mDdunW2eGtCiAIk26StlCoNdAFGA2it04H0B7rqfUbEtmJWadbIyEiefPJJgoKCqF27trXflhCigMnJ6hFPIAYIVEodVEp9q5S6I6MppfyUUvuVUvtjYmKsHuiDMqM0a1xcHP369WP69Ol07NjRtm9QCFEg5CRpFwJaAjO11i2Am8Cbfz9Iaz1ba+2jtfbx8PCwcpgP7ujRo7Rp04bmzZszdepUpk2bxooVK3jjjTdo1qwZzZs3Z9euXdmeZ9GiRcydO5dmzZrh7e3N6tWrAZgyZQpNmjShcePGdOjQgWbNmvH1119z5swZpk2bRvPmzWnevDnR0dG2fqtCiHws29KsSqnKwG6tda1bv+8MvKm17nev10hp1tyTz0eIgs1qpVm11leAi0qp+rf+qAdw7AHjE0IIkQc5XT3yIrDo1sqRs8AY24UkhBDiXnKUtLXWh4Bsh+1CCCFsS2qPCCGEE5GkLYQQTkSSthBCOBFJ2jmQ19Kse/fu/X19drNmzVi1apUNohNCFCQFpspfXj1IadbGjRuzf/9+ChUqxOXLl2nWrBmPPfYYhQrJxy6EyJsCkz3MKM1avPgfdbVSU1NRSpn4CQgh8gNTkvZHez/ixPUTVj1ng3INeKPNG/f8vlmlWffs2YOvry8REREsWLBARtlCiAdSYDKIWaVZ27ZtS1hYGMePH2fUqFH07duXokWL2uptCiHyOVOS9v1GxLZiVmnW2xo2bEiJEiUIDQ3Fx0f2KQkh8qbArB4xozTruXPnyMzMBCAiIoITJ05Qq1Yt271JIUS+V2CmR44ePcqUKVNwcXHBzc2NmTNnUqhQIV566SXi4+PJzMzklVdewdvb+77nWbRoERMnTuSDDz4gIyODoUOH0qxZM6ZMmcLp06fRWtOjRw+aNWvGwoULmT59Om5ubri4uDBjxgwqVKhgp3cshMiPsi3NmhdSmjX35PMRomCzWmlWIYQQjkOSthBCOBG7Jm1bTMXkB/K5CCFyym5Ju2jRosTGxkqC+hutNbGxsbJ2WwiRI3ZbPVK9enUiIyNxxE7tZitatCjVq1c3OwwhhBOwW9J2c3PD09PTXpcTQoh8SR5ECiGEE5GkLYQQTkSSthBCOBFJ2kII4URy9CBSKXUeSASygMycbLUUQghhfblZPfKw1vqazSIRQgiRLZkeEbanNcScMv4rxC2ZWRbWhl42Owynk9OkrYF1SqkQpZTf3Q5QSvkppfYrpfbLBhrxu6xM+PEF+KY17JlldjTCQaRmZPH8ogNMWHiAkIjrZofjVHKatDtprVsCfYFJSqkufz9Aaz1ba+2jtfbx8PCwapDCSWWkwvJRcHAhlKkJ69+BK6FmRyVMlpSWie+8faw7dpV3+zeiVc1yZofkVHKUtLXWUbf+Gw2sAtrYMiiRD6QlwuJBcGIN9JkO4zZBsbLw/VhITzY7OmGS6zfTeXbObvacu86ng5rh20l2SedWtklbKeWulCp5+9dAb0CGS+Lekq/D/AFwfic84Q/tJoJ7BXjSH2JOwLq3zY5QmOByfAqDZwVz/Eoi/sNb8XQrqbeTFzlZPVIJWKWUun38Yq31WptGJZxXwiVY8CRcPwdDFkKDR//4Xu3u0P4FCP4a6vSABv3Mi1PY1dmYJEbM3Ut8Sgbzx7Shfe3y2b9I3FW2SVtrfRZoZodYhLOLDYegJyDlBgz/Hjw733lMj3fh3DZY/QJUbQmlqtg9TGFfYZfiGRWwF4uGJePa0aR6abNDcmqy5E9Yx+UjEPAIZNyE0T/dPWEDFCoCAwMgMxVWjQeLxb5xCrvae+46Q2ftprCrC9+Nby8J2wokaYsHFxEM8/qDaxEYsxaqtrj/8RXqGg8nz22F4K/sE6Owu00nrjJi7h48ShVh+cQO1KlYwuyQ8gVJ2uLBnFpnzGGXqAi+a8GjXs5e13IkNBwAG6dB1AHbxijsbvWhKPyCQqhbqQTLx7enWpliZoeUb0jSFnl3dAUsHWYkat+1UKZGzl+rFDz2BZSoBN8/B2lJtotT2FVQ8HleWXaIVjXLsmRcO8qXKGJ2SPmKJG2RN3vnGMm2RjsYtcZY0pdbxcvBU7Ph+llY+4b1YxR2pbXmy42neXd1GD0aVGS+bxtKFnUzO6x8R5K2yB2tYevH8MtkqNcHhq+AoqXyfr5anaDz/xm7JkNXWi9OYVcWi2bammN8tv4UT7WoxszhrSjq5mp2WPmSJG2RcxYL/PYP2PwBNB0KQxaAmxXmKru9CdV84KdXIO7Cg59P2FVmloXJKw4TuPM8ozvU4pNBzXBzldRiK/LJipzJyoTVk2D3DGg7AZ6YCa5WuvV1dYOnvwVtgZV+YMmyznmFzaVmZDFh4QFWHoji1Z71eO+xRri4KLPDytckaYvsZaTCdyPh8GLo9g9juZ6Llf/qlPOEfp/ChWDY/ql1zy1sIjE1g9GBe9lw/CpTB3jzcs+63No5LWwoN00QREGUlghLhsH57dD3Y2h718q81tFsCJzZAFumg2dXeKit7a4lHkhsUhqjA/dx7HICnw9pzhMtqpkdUoEhI21xbzdjYf5jELELnppj24R9W79PoHR1WPkcpMbb/noi1y7FpTBoVjCnriYye0QrSdh2Jklb3F18JAT2gejjMHQxNB1sn+sWLW3Mb8dHwZrXpNuNgwmPSWLgzF3EJKQR5NuGHg0rmR1SgSNJW9zp2hkI6AOJV2D4Sqjfx77Xr9EGur0FoSvgyDL7XlvcU2hUPIP8g0nLtLDErx1tvaRSnxkkaYu/unToVuGnFBi9Bmp1NCeOzq/BQx3g5/8zNt8IU+0+G8vQ2bsp5ubK8gntaVxNCj+ZRZK2+MP5ncYctlsx8P0NqphYkdfF1dgt6eJq7LzMyjAvlgJuw7GrjArYS6VSRVgxsT1eHlL4yUyStIXh5FpY+BSUrGwk7Ap1zI7IqGXy2JcQFQJb/mN2NAXSqoORjF8YQv3KJVk+oQNVSkvhJ7NJ0hZw5DtY+gxUbGiUVi3tQKsBvJ+AFiNg+2dwfofZ0RQogTvP8eqyw7T1LMfice0o517Y7JAEkrTFnlmwchzU7ACjfgJ3B3y41Gc6lPMydksmXzc7mnxPa83/1p9i6k/H6N2oEgGjW1OiiGzpcBSStAsqrY1NLL++DvX7wbMroEhJs6O6uyIlYOBcSIqGn16SZYA2ZLFopv50jC82nmZgq+rMeLalFH5yMJK0CyKLBda+acwTN38WBgeBW1Gzo7q/qi2gxztw/Cc4EGR2NPlSRpaF/1t+mHm7zjO2kyf/fbophaTwk8OR/yMFTVYG/DAB9vhDu0kw4GtwdZJb3/YvGtvb174JMafMjiZfSc3IYsKCEFYdjGJy73q83a+hFH5yUJK0C5KMFFg2wtiw0v1teORD6xd+siUXF3hyFhQqCt+Phcw0syPKFxJSMxgZsJdNJ6N5/4nGvNBdCj85shz/xCqlXJVSB5VSa2wZkLCR1ARYOBBOrTWq6XWZYrT8cjalqsDj38CVI0Z/SfFAriWlMWz2bg5E3ODzIc0Z0a6m2SGJbORmmPUycNxWgQgbunkN5veHi7uNuh6tnzM7ogfT4FHjPQR/DWc2mh2N04q8kcxg/2DCY5KYM9KHx5s70FJPcU85StpKqepAP+Bb24YjrC7uolFHJOYUDF0CTQbaPQStNZE3ktHWXPXR+wPwaACrJkBSjPXOW0CciU5kkH8wMUlpLBjblocbVLR/EBYLnN1i/+s6uZyOtD8HXgcstgtFWF3MKaOOSFI0jFgF9Xrb9fIZWRZWHYyk7xfb6fTRZh79cgerD0WRmWWFv0ZuxeDpuUb51tWTZBlgLhyJjGOQfzAZWZplfu1pXauc/YPIyoTVz0PQ43Bhj/2v78SyTdpKqf5AtNY6JJvj/JRS+5VS+2NiZORjuksHjdKqWRkw5meo2d5ul05OzyRw5zm6fbyFV5cdJsuiebVnPdIzs3h56SG6fryFeTvPkZL+gG3FKjeG3u/D6d+M7vAiW7vCrzFs9m7cixRixYT2NKr6AE2Z8yojFb4bAYeXGJ2QarSxfwxOTGV3y6qU+g8wAsgEigKlgJVa6+H3eo2Pj4/ev3+/NeMUuXFuu9FtpnhZGPEDlK9tl8tev5nOvF3nCQo+T1xyBj41yzKha226N6iIi4vCYtFsPBGN/9ZwQiJuULa4G6M61GJU+1qUzesWaa1h8WA4uxX8NkMlb+u+qXxkXdgVXlhykJrlirNgbFsqlzZhbX5qglEywR6dkJyMUipEa+2T7XG5mWdUSnUDJmut+9/vOEnaJjrxCywfbfRcHLEKSlW1+SUvXk/m2+1nWbb/IqkZFno2rMSErl743Oe2e9/568zaGs6G49EUc3NlSOsaPNfZk+pli+c+gKQYmNkBipc3Erc1OsTnMytCInnj+yM0rlaaeaNb5/0fyQdx8xosfBquHIUn/e3XWMNJ5DRpO8muCpEjh5YY87tVmxvb0ovbdq7y2KUEZm0LZ82Ry7goeKJ5Nfy6eFG3Uvbb4VvXKkfrWuU4dTWRWVvPsnB3BAt2R/BY0yqM71qbhlVycdtewgOenGkkhHXvGC3LxO/m7jjH+2uO0bFOeWaP8MHdjDoi8ZGw4EmIu2B0QrJ3Y418JFcj7ZySkbYJds80dgp6doWhi2xWR0RrTfDZWPy3nmXbqRjcC7vyTNuH8O3k+UBlOy/FpRCw4xxL9l7gZnoWXet5MKFrbdp5lcv5Ro/f/mksAxy2FOr3zXMs+YXWms/Wn+KrTWfo412ZL4Y1p0ghE+qIXDsNQU9AWoLx/8asxhoOzibTIzklSduOtIbN/4Zt/4WGjxkrKgoVsfplsiya38KuMGtrOIcj46lQoghjOtZieNualC7uZrXrxCdnsGD3eQJ3nif2ZjrNapRhYlcvejWqjGt226oz0+DbHpBwCSbuMmqDF1AWi+a9H8NYsDuCIT41+PDJxubUEbl0yLgDAhj+vXEXKO5KknZBYLEYVfr2zYEWw6H/F1avI5KakcXKA1HM2X6Wc9duUrN8cfy6ePF0y+o2rf6WmpHF8pBI5mw7y4XryXhVcGdcFy+ealnt/qPFmFMwqws81M7ob+lM2/StJCPLwv99d5gfD19ifBcv3uzbwJxt6ed3wOKhUKyM8UDcERprODBJ2vldVgb8MBGOLocOL0Kv9626LT0+JYOFuyMI3Hmea0lpNKlWmglda9OncQ5GvFaUZdH8GnoZ/63hhEYl4FGyCL4dPXm23UOUKnqPEX7IPPjpZWMDTocX7RarI0hJz+L5RSFsPhnDG30aMLGbfVYO3eHkr8YD8TIPGQ/ES1c3Jw4nIkk7P0tPNn4gTv8GPd6DTq9aLWFfiU8lYOc5Fu+5QFJaJp3rVmBi19q0r13e1CJCWmt2noll1rZwtp++RokihXj21lx6pVJF/36wsQ745Fp4bkOBuSWPT8ngufn72B9xgw+faMIzbR8yJ5DDy4wBRZWm8Oz3jtlYwwFJ0s6vUuONW84LwdD/M/Dxtcppz0Qbqzh+OBRFlkXTv2lV/Lp4OWTX7dCoePy3hvPL0csUcnHhyRbV8OvqRe0/N5xNvg4zO0Lh4jB+GxR2Ny9gO4hJTGNkwF7ORCfyvyHN6d/U9ks972q3P6x9A2p1hmFLHLexhgOSpJ0fJUUbzXejT8BTs6Dx0w98ypCIG/hvDWf9sasUdXNhsE8NxnX2oka5PKyXtrMLscnM2X6W7/ZfJD3LQq+GlZjQrTYtHyprHHBuG8wfAC1HwICvzA3Whi5eT2bE3D1cTUjDf0QrutbzsH8QtzshbZ1udEIaGOD4jTUcjCTt/CbugrFsKvEyDFkAdXrm+VQWi2bzSWNn4r7zNyhT3I2R7Wsxqn1Nypew/soTW7uWlMb8XecJCo4gPiWDNp7lmNi1Nt3qe6A2ToMdn8Gg+UaT4Hzm9NVEhs/dQ0p6FoFjWtOqpgl1RG53Qto7y+iE9NiXztNYw4FI0s5Pok8YGxMybsIzy+Ghtnk6TXqmhR8PX2L2tnBOXU2iWplijO3kyZDWNczZcGFlN9MyWbL3AnN3nONyfCr1K5VkQucaPH7AF5fr4cYywHz0QOzQxThGB+7FzdWFIN82uduQZC1ZGcaGriPLjE5IvT8okCt2rEGSdn4RFWI0L3B1M5awVW6c61PcNZl186J/06q45cMegBlZFn48dIlZt/5xalMqjkVZk3Gp2hzXMWvAxfkb1e48c41xQfspX6IwC8e2pWZ5E+bsM1KMB+Kn1hqdkDpPds7GGg5CknZ+cHarUVyneHkY+QOU88rVy68lpTFv53kW7L7LtEEB+OGyWDRbTkXjv+Us1S/8wGeF/dnx0AQaDp7mlNNAt60NvcJLSw7iWcGdoLFt7lw9Yw+p8UZRsohdRtkAZ2+s4QCk9oizO74GVoyB8nWMEXapKjl+6YXYZGZvD2f5/kjSsyz0blSJ8V3/9ICugHBxUXRvUInuDSoRcr4+e5afol3EbJ79qBr1fbo7zQPXP/tu30XeXHmEZjXKEDi6NWWKm1D4KSnm1gPxY0YnJBMaaxRkMtJ2RAcXwo8vQrVW8Mx3OS78lKOlcAVZajwZ33QkITWTnskfkKCL069JFcZ39cK7quMtbfy7OdvO8uEvx+lctwKzRrSieGETxlxxF2HBExAfBYOD7N5YIz+Tkbaz2vU1rPsneD0MQxZCkfsn3NubTvy3hrPjzDVKFinEuC5e+Ha8y6aTgq5oadwGzaV8YB92NfmV/5WazOI9F/jx8CWH2UR0N1prPll3km82h9OvSRU+G9LMnMJPMaeMhJ2WZOxytGNjDfEHGWk7Cq1h0wew/RNo9Dg8Nee+hZ8ysyz8GnqFWdtysb1bGLZ8BFv+DU/OJr7eUyzaE0HADmO7ftPqpRnfxf7b9e8ly6J5Z3Uoi/dcYFibGnzwRBNz4oo6AIsGgnKFESuhchP7x5DPyYNIZ2LJgl8mw/4AaDkS+n9+zxUOdyuk5NfFiyezK6Qk/pCVaXSnvxIKE7ZDOc/fC2PN3hbO+dhkapUvzjg7FMa6n/RMC699d4g1Ry4zsVttXn+kvjl3Aee23eqEVM6unZAKGknaziIzHVaNh7CV0PEV6Pmvuy6biktOZ0FwBPN25aFkqbhT3AWY2Qk86sGYX40llRgj23VhV/D/vQRtYcZ09GR4u5qULma/O5jk9EwmLjzA1lMxvNW3AeO7mpQoT/wMy8fYtRNSQSVJ2xmkJxuFjc5sgJ5TodMrdxxyKS6FubeaAySnZ9GtvtEcoK1nLpoDiLsLXWms0OnyOnT/51++da9mD2M7edm8t2J8cga+8/dx8MIN/v1kE4a2Manw06HFsPoFu3VCKugkaTu6lDhYPAQi9xrTIa1G/eXbt9twrT4UhYa8teES2fthEhxeDKPW3LOjyt/bqj3evBoTunpRp6L1iyFFJ6QyMmAvZ2Nu8sXQ5vRtkvOlnlYVPAN+e8vmnZDEHyRpO7LEq0Y3j5gTxjrXP9XE2Hf+Ov5bwtl4wgoNb0X20pKMpgmZaTBxBxS791r2uzUwntjNy2r1Pi7EJjN87h6uJaUxe4QPnepWsMp5c0Vr2PwhbPvYpp2QxJ0kaTuqG+eNwk9J0TB0IdTujsWi2XD8KrO2nSUk4gZli7sxuoMnI9vXNKdrdkETdQDm9oIG/YzCUtlMO8UmpREUHMH84PPEJWfgU7MsE7rWpnuDirjk8fnCySuJjJi7h7RMC/PGtKaFGRuhLBb4dQrs+9ZmnZDEvUnSdkTRx28VfkqBZ1eQXqUVPxyKYva2s5yJTqJ62WKM6+zFYJ8aFCssK0HsasfnsOE9GPC1Uco1B5LTM1m27yLfbj9HVFwKdSuWYHzX2gxoVpXChXJe0+XAhRuMCdxHUTcXFoxtS70cdLO3Oht3QhLZk6TtaCL3G+tcXYtwc8hyFp1zZ+6Oc1xNSKNhlVJM6OpFvyZVzGm+KoxR5oLHjf9P47dBhbo5fmlGloWfjxgt0U5cSaRK6aKM7eTJ0DYPUSKb6onbT8cwfkEIHiWLsHBsW3O21duwE5LIOaslbaVUUWAbUARjB+UKrfV793uNJO2/Cd8MS58l092DubX+x9eHMkhMzaS9V3kmdKtNl7oVZCWII0i4ZHS7KVMDxm6AQrmbmtJas+VUDP5bwtlz7jqlihZiZPtajO5Yiwp3KVD1y9HLvLz0ILU9ShA0tg0VS5qwgzUlDpYMhQu7rdoJSeSeNZO2Aty11klKKTdgB/Cy1nr3vV4jSftPjq1Gr3iOK4VrMDBpMpeyStO3cWXGd6lNsxplzI5O/N2Jn43Kih1egt7v5/k0By/cYNbWs/x27AqFXV0Y2Ko6fl28fi+hunTvBf6x6igtHipLwKjWlC5uwi5WG3RCEnlntdoj2sjqSbd+63bry/pzKvnQxY3+VNv+FgcttRmf/ga9WjbAr4sXnhXyd7/Cu4lPi6d0EccvykSDfsZoc9eXULs71H44T6dp8VBZ/Ee0IjwmiTnbzrJ8fyRL9l6gb5MqPFSuODO3hNO1ngczh7c0p/DTjQijjkjiFXhm6QN1QsorrTXHYo/hXcHb7td2Zjma01ZKuQIhQB3gG631G/c7vlzdcnrZhmV0r9Ed13xQcD5XtIbwTUSt+Q/V4vaxg2bsa/0Fz3ZpaM7tr4ks2sL2yO0EhAZwIPoAL7V4ieeaPOf4U0HpyTC7m1EzeuJOcH/wpXfRCakE7DzPot0RJKZl0r9pFT4b3DxXDyytxkqdkB6ERVv4777/svj4YoL6BtG8YnO7x+BobPIgUilVBlgFvKi1Dv3b9/wAPwD3Wu6tPP/lSc1SNRnlPYoBtQdQxDWfr/XMyoRjP6B3fo66cpQruizBHkPoOeZdSroXrJF1hiWDX8/9SmBoIGfizlDZvTJepb3YdWkXIxuNZLLPZMdP3FeOwpzuULuH0VXcSvEmpGZwIOIGnet6mFN+IDIEFj0NroXz3AnpQWVYMnh357usObuG4Q2HM6X1FFyUPIC32eoRpdS7QLLW+pN7HePj46M/XPEhAaEBHIs9Rvmi5RneaDiD6w+mVOF8tqMvPdmofx38FcRdILpITT5OeoRiLYfy3pMtC1RdkOSMZFacWsGC4wu4cvMKdcrUwbexL308++CqXPlo70csPrGYJ+o8wXvt36OQi4OvAd4902hY++gn0Gac2dE8uLNbYMkzxp1DHjohWUNqZipTtk5hS+QWXmj+An5N/Rz/H3A7seaDSA8gQ2sdp5QqBqwDPtJar7nXa24/iNRas+fKHgJDA9l1aRfubu4MqjeI4Q2HU8m9Um7fk2NJvg575xgdqJNjsVRvzZysAUw/58nzD9dlcm+TKrKZIDYllsUnFrP0xFIS0hNoVakVvo196Vyt818+A601/of9mXF4Bt1rdOe/Xf/r2HdgWsOiQXB+O4zbDJUamR1R3h3/CVb45qkTkrUkpify4qYXOXD1AP9o+w+GNhhq9xgcmTWTdlNgPuAKuADfaa2n3e81d1s9cjz2OIGhgfwW8RsuyoX+Xv0Z4z0GrzL2/9f+gcRdgOBv4EAQZCRD3UdIbfsi47a4sf1MLP98tCHjujjZe8qji4kXmR82nx/O/EB6VjoP13gY3ya+NPNodt/XLTq+iOl7p9O2clu+6P4F7m4OPH2UFA0zO4C7B4zbBG7FzI4o9w4sgJ9eynUnJGuKTYll4oaJnL5xmg87fcijXo/aPQZH57Cba/78g56WlWb8oDf2dfwHEVfDYOcXcHSFMb/ZZBB0eIm4knXwnbePQxfjmP5UUwa3rmF2pDZ3PPY4AaEBrItYh4tyYUDtAYzyHoVX6Zz/Y/VT+E+8s/MdGpZryIyeMyhb1IH7V57eYMwDtxkPj/7X7GhyZ9dXsO5tYyXMkIVQ2P7/QF5Ouozfej8u37zMZ90+o0v1LnaPwRk4bNK+7XrqdRYfX8ySE0tISE+gZcWWxi119c6O81BCa4jYaWxxPrMe3NyNanztnocyNYhOSGXE3L2cu3aTL4c1p09jkyqy2YHWmt2XdxMYGkjw5WDc3dwZXG8wwxsNp2Lxink655aLW5i8dTLVSlRjVq9ZVHavbN2grWntW7B7hjFSrfeI2dFkT2vY9D5s/xQaPQFPzTal8NPZ+LP4rfMjOSOZr3t8TctKLe0eg7Nw+KR9W3JGMt+f/p6gY0G/P7wa03gMfT374uZiUtssiwVO/mwk66j9ULwCtJ0Arcf+fmsZEXuT4XP3EJuUzpyRPnSsY0JFNjvIsmSx/sJ6AkMDbfJQef+V/by46UVKFi7J7F6zqVW61oMHbQuZaTCnByRehom7oKQDP5P5SyekUdD/f/fshGRLYdfCmLhhIkopZvWaRYNyDewegzNxmqR9W4Ylg7Xn1hIQGvD7MrERDUcwsN5AirvZqR5DZhocXmpsrIg9A2VqGsVzWgz/y1zmiSsJjJi7l4wsC/PGtKF5PtzZmJqZyuozq5kXNo/IpEhqlqrJaO/RPFb7Mas/PDwWe4yJGyYC4N/Tn4blG1r1/FYTfcJYv12zPTz7Pbg4yB3hn+WwE5Kt7b28lxc3vUiZImWY3Xs2NUvVtHsMzsbpkvZtWmu2RxkbMkKuhlCqcCmGNhjKMw2eoXyx8laO9JbUeNgfaCzxSroClZsaXWQaPn5HacqQiBuMCdxL8cKFWDC2DXXNqMhmQ/Fp8Sw7uYxFxxdxPfU6TSo0wbexLw/XeNimG6XOx5/Hb70fiemJfN3ja1pVamWzaz2Q/QGw5lV45N/QfpLZ0fxVDjoh2cOmC5uYsnUKNUrWYFavWc6/UsxOnDZp/9nhmMMEHA1g88XNFHYtzBN1nmCU9yhqlLTSw77EK8Y85f5ASEswunR0egW8Hr7r6GTbKaMiW6VSRVhgVkU2G7ly8woLji1gxakVJGcm07FaR8Y2HotPJR+7LV28cvMKfuv9uJR0yXEfWGkNy4bDqd9g3Eaocv+VMnaTcuNWJ6R9d+2EZC+rz6zmvV3v0ah8I2b0mEGZomVMicMZ5YukfdvZ+LPMC53HT2d/wqIt9K7ZG9/Gvnm/jb522pgCObwULJnQ6HHo+DJUbXHPl/x85DKvLDtI3Yolme/bBo+SDry+OBfC48IJCA3gl7O/oNH08ezDGO8x1C9X35R4bqTeYOKGiZy8fpIPOn1AP69+psRxX8nXjWWARUqC3xZTVmT8ReJVo/BTzMk7OiHZ08JjC/lo30e0rdKWLx528KWcDihfJe3bopOjWXhsId+d+o6bGTdpX6U9YxqPoV2VdjkbDUbuhx3/Myq5uRaGFs9C+xeg/P07XS+5VZHNp2ZZvh3V2q5duW3lwNUDBIYGsiVyC0Vdi/JU3acY6T2SaiWqmR0aNzNu8tKml9h3ZR9vtX2LYQ2GmR3Snc5uhaDHjRHtY1+YF8ddOiHZm9aabw59w6wjs+j5UE8+6vIRhV2l41Ju5cukfVtCegLfnfyOhccWEpsaS6PyjRjTeAy9Hup157yr1nB6vbHGOmIHFC0NrcdB2/FQIvulajO3hPPR2hM8XN+DGc+2cuqOMhZtYevFrQSEBnAo5hBlipThmQbPMLTBUIdbJ52WlcaUrVPYfHEzk5pPYnzT8Y63w3TDv4xBwOAF0GiA/a9/9ZhR+Ckz1eiWXqO13UOwaAv/2fMflp5cypN1nuTd9u86fnkCB5Wvk/ZtaVlp/BT+E/PC5hGREEH1EtUZ7T2ax+s8TlHlCqErjWQdHQalqhkPjlqOzFFnaa010389waxtZxnQrCqfDm6Gm5N2lcnIymDN2TXMC5vH2fizVHWvykjvkTxZ50n7rczJg0xLJu/teo8fw390zMJCWRkwtzdcP2ssAyxtx7uUi/uMTkiFisKIVaZssc+wZPD2jrf55dwvjPYezWutXnO8f1idSIFI2rdlWbLYfHEzAaEBHL12lHKuxXg2MZkhMZGULl/fmK9uPDDHnUiyLJp/rDzKsv0XGdGuJlMHeOe5YauZbmbcZMWpFQQdCyI6OZp6Zevh29iX3rV6m7cGPpcs2sLH+z5m4fGFDKg9gKkdpjrWSC42HPw7Q7WWMHK1fdZDh2+CpcONO8WRP0DZWra/5t+kZKYweetktkVu4+WWLzO28VhJ2A/Iak0QnIGriys9K7SgRzFv9l/fw9yiKXxVvBhzPeswsP7TjKjbnco5TNhpmVm8svQQv4Ze4cXudXitVz2n+8t4LeUai48vZunJpSSmJ9KmchumdphKx6odne69uCgXXm/9OmWKlOHrQ1+TkJ7AJ10/cZxCU+Vrw6Mfw+rnYefn0Pn/bHu9sB/g++fAo75R+MmETT4J6Qm8uPFFDkYf5J127zC4/mC7x1CQOf9I+8b5WwWcFkBmCtR/FDq+wskSZQgMC2TtubUoFI96PYpvY19ql7n3Q8ebaZmMXxDCjjPXeKd/I8Z28rTPe7CSCwkXmBc2j9VnVpNhyaBnzZ6M8R5DE48mZodmFUtPLOXfe/6NT2Ufvnz4S0oULmF2SAatjQp6x1bD2HVQPdvBUt6EzIc1r0D11vDMMihm/+cQ11KuMXHDRM7cOMN/Ov+HPp597B5DfpX/p0cuHzHmq8NWgXKBpkOM3YsV/7pVNiopiqCwIFaeXklqVirdqndjTOMxd9RAuHEznTHz9nE0Kp6Pnm7KwFbVbRu/FYVdC2Nu6Fw2RGygkEshBtQewGjv0Y67JfwB/HL2F/6545/UK1ePmT1nUq6o/SvW3VVKHPh3MqZHJuzI0XOTXNnxOWx4z2gLNjjIlGWGUUlR+K3zIzo5mv89/D86Vetk9xjys/yZtLWGc9uM29DwTVC4BLQabRRwyuYh0I3UGyw9sZTFJxYTlxZHc4/m+Db2pWuNrkQnpDNi7h4irifz9bAW9PZ24MJFt2itCb4UTEBoAHuu7KGEWwmG1B/Csw2fxaO4h9nh2dS2yG28tuU1qrhXYU7vOY5TaCoiGOY9agwgnvS3zjm1Nlap7PwcvJ+CJ2fluku8NYTHheO33o+UzBS+6fENLSree0+DyJv8lbQtWUYR952fw6WD4F4R2k0wGrDm8hYxOSOZVWdWERQWxKWbl6hRohbXotpz81pT5oxqR4fajl34KdOSybrz6wgMC+TE9RN4FPNgRKMRDKo3yHGmC+zgwNUDvLDxBdwLuzO712w8SzvIVNbm/8DW6fD0XGgy8MHOZcmCn1+DkHnG3/VHPzGl8NPRmKNM3DiRQqoQs3rNMm3jVX6XP5J2RiocXmzUBL5+1miP1OFFaPYMuD1Yk9wMSwbzDq3mq5A56MKXKFvEg7FNRjGw3kCH3MmVkpnCD2d+YH7YfKKSoqhVqha+jX3p59WvwG5kOHH9BOPXjzc64vTyp1F5B+gsk5VpjLajjxvTJGXzWCgpMx1WjoNjP0DnydD9bVMKP+2+vJuXNr1EuaLlmNNrDjVK5f968WZx7qSdEgf758Juf7gZbWwv7/gKNHzMaiON/eevM2bePtyLuPLaAM1vkUvZe2UvJQuXZGj9oTzT8BkqFDN/1B2XGseSk0tYcnwJN9Ju0NSj6e8FnBxqzbJJIhIi8FvnR3x6PF91/4rWle2/weQONyKM+e2KDWH0L3cUHctW+k2jvkn4Juj9IXR4wTZxZmNjxEambJtCzVI1mdVrVp7rpouccc6knXDJWAkSMg/Sk4xO2B1fBs8uVh1lbDkZzYSFIVQtXYwFz7WlWhmj7OrRmKMEhgWyIWIDbi5uPF7ncUZ7j+ahUg9Z7do5dTnpMkHHgvj+9PekZKbQpXoXfBv70rJiS6dbtmdrV29eZfz68UQmRfJJ10/oVqOb2SEZHY6+Hwtd34SH38r565KvG4WfovbDgK+MssAmWHV6Ff8K/heNKzRmRo8ZlC5S2pQ4ChLnStoxJ2Hnl3BkGegs44FLx5ehSlOrx/bj4Uu8tuwQ9SsbhZ8qlLhzve/5+PPMC5vHj+E/kmnJpGfNnoxtPBbvCt5Wj+fvTt04RWBoIL+e+xWFoq9nX8Y0HkPdsnVtfm1nFpcax/Mbn+dY7DHe7/g+j9V+zOyQYNVEOLLUGG3XbJ/98YlXjG3psWdgYIBxZ2mC+WHz+WT/J7Sv0p7PH/7coXfN5ifOkbQv7DEeLp78BQoVM0YVHV6w2Q6vhbsjeGd1KK1rlePbUT6UKnr/XYExyTEsOr6IZSeXkZSRRNvKbfFt7Ev7qu2tOtrVWhNyNYSA0AC2R22nWKFiPF33aUY2GkmVEvm3hZm13cy4ycubX2bP5T282eZNnm34rLkBpSUauyUtmcb8drEy9z72+lmj8NPNazBsMXh1s1OQf9Ba89XBr5hzdA69avZieufpBfZ5iRkcN2lbLHB6nZGsLwQbqz/a+Blf7raZQ9ZaM2NLOB//dpIeDSryzbMtKeqW87nxpPQklp9azoJjC4hJiaFBuQaM8R5D71q9H2hLtUVb2HxhMwFhARyJOULZImV5puEzDGswTG5H8yg9K503tr3BhgsbmNhsIhObTTR3OikyBAJ6G6PmgYF3n+a7GmaMsLPSjY441e3fACLLksW/9/yb7059x9N1n+addu/YtOmFuJPjJe3MdAhdYUyDxByH0jWMAk4tRkAR2y1V01rz4c/H+XbHOZ5oXpWPB+W98FN6Vjo/n/2ZgNAAziecp1qJaozyHsUTdZ6gWKFi2Z/gT+dZc3YNgaGBv5/ndqGr3JxH3F2mJZOpwVP54cwPPNPgGd5o84a5D223fwYbp8LjM4xywH92YQ8sHmQ0jR6x6o7NYfaQkZXBP3b8g7Xn1+Lb2JdXWr4iz01M4DhJOy3R2H67ewYkREFF71sFnJ4CV9sWLcrMsvDWyqMsD4lkdIdavNu/kVUKP1m05fcCVbdHyMMaDmNY/WH37dSRmJ7I8lPLWXhsITEpMTQs19AoKVuzl2MVQcoHtNZ8uv9T5h+bT3+v/kzrOM3ERtFZRu3tqAMwYfsf9dvPbIBlI6BkZRjxQ96XBz6AlMwUXt3yKjujdvJqq1fxbexr9xiEwWpJWylVAwgCKgEamK21vm/Vdx8fH71/y6+wxx/2zTF6MNbsZCTrur3sst40NSOLl5YcZN2xq7zcoy6v9Kxr9dGD1poD0QcICA1gW+S2e85FxyTHsPD4Qr47+Z0xN17l1tx4FevOjYu/0lozN3QuXxz4gq7Vu/JJ108oWujB1vfnWXwU+Hc0ntf4roMTa2ClnzGyHr4yR7XdrR5SWjwvbHyBI9eO8G67d3m63tN2j0H8wZpJuwpQRWt9QClVEggBntBaH7vXa3zqVtL7R2F0N2/QDzq9arsiOneRlJaJX9B+doXH8t5jjRjT0fa75U7fOP37qg+Npq9nXx7zeox1Eev4MfxHsnQWvWr2YkzjMXiXt/0qFPGH705+xwe7P6BlpZZ81f0rShY2qRnz8Z+M9de1OsP5HfBQOxi29P4PKG3kWso1xq8fz9n4s3zU+SN61+pt9xjEX9lsekQptRr4Wmu9/l7H+FRz0/tnjDdG1hXsu1Tt+s10xgTuJfRSAh8PbMpTLe1b+Onv66sLu/zRkNiM9d7CsPbcWt7a/hZ1y9ZlZs+ZlC9W3pxAfnoFQgKhbm8YNB8K2385XWRiJH7r/biWco3PH/6cDlU72D0GcSebJG2lVC1gG9BYa53wt+/5AX4Ang9Va3U2IjJXAVvD5fgURszdy4Xrycx4piU9G9m/1vBt8WnxBF8Kxqeyj0PsrBSwI2oHr25+lcrulZnVaxZVS1S1fxAZqXBmPdTrY/NnOndz+sZpxq8fT1pWGjN6zqCZh4N0kxfWT9pKqRLAVuBDrfXK+x1r7841AOeu3WT4t3uIT8ng21E+tPMyaSQlHNrB6INM2jiJ4oWKM7v3bLxKe5kdkt0cjjnM8xuep4hrEWb1miUbthxMTpN2jtZBKaXcgO+BRdklbDOEXYpnkP8uUjOyWOrXThK2uKcWFVsQ+EggmZZMRv86mrBrYWaHZBfBl4IZt24cpQqXIqhvkCRsJ5Zt0lbG8oa5wHGt9We2Dyl39p67ztBZuyns6sJ3E9rTuJpsShH3V79cfRb0XUBxt+L4/ubL3st7zQ7JptZHrGfSxklUL1mdoL5BVC/pPA0+xJ1yMtLuCIwAuiulDt36etTGceXIphNXGTF3Dx6lirBiYgdqexScetLiwdQoVYOgvkFULVGViRsmsunCJrNDsomVp1cyeetkGpVvROAjgfm+QUZBkG3S1lrv0ForrXVTrXXzW1+/2CO4+1l9KAq/oBDqVirB8vHtqVpGdhKK3KlYvCLz+syjQfkGvLblNVafWW12SFYVGBrIe7veo32V9szuNVtKI+QTTlmQOSj4PK8sO0SrmmVZMq4d5e9SqU+InChdpDRzes2hTeU2vL3zbRYcW2B2SA9Ma83nIZ/zWchn9KnVh6+6fyWV+vIRp0raWmu+3Hiad1eH0aNBJeb7tqFkNpX6hMhOcbfifN3ja3rV7MV/9/2Xrw5+hS3KO9hDliWLabunMTd0LoPqDWJ65+m4mbC0UNiO0yRti0Uzbc0xPlt/iqdaVsN/eO4q9QlxP4VdC/Nxl495uu7TzD4ymw/3fIhFW8wOK1cysjJ4fdvrrDi1gnFNxkmlvnzKKaoUZWZZeP37I6w8EMWYjrV4p591Cj8J8WeuLq681/49ShUpRWBoIAnpCXzY6UPzCk3lQnJGMq9ueZVdl3Yx2Wcyo7xHmR2SsBGHT9qpGVm8sPggG45f5bVe9Xixex0psiRsRinFa61eo3Th0nx+4HOS0pP4tNunDl0yNz4tnkkbJ3H02lGmdZjGk3WfNDskYUMOPT2SmJrB6MC9bDh+lWmPe/NSD+tX6hPibsY2Gct77d9jR9QOJqyfQEJ6QvYvMkFMcgyj147mWOwxPu36qSTsAsBhk3ZsUhrPzNnD/vM3+GJoc0a2r2V2SKKAGVhvIB93/Zgj147gu9aXaynXzA7pLy4mXGTEryOISopiRs8Z9KzZ0+yQhB04ZNK+FJfC4FnBnLqayOyRrXi8eTWzQxIF1CO1HuGb7t9wIfECo34dRVRSlNkhAUYD6JFrR5KUkcTc3nNpV6Wd2SEJO3G4pB0ek8TAmbuITkhjwdi2dG9gXqU+IQA6VOvA7F6ziUuLY+SvIwmPCzc1nkPRhxi9djQuyoX5febTxKOJqfEI+3KopB0aFc9g/2DSsyws8WtHG89yZockBADNKzZnXp95aK0ZtXYUR2OOmhLHrqhd+K33o2yRsgT1DaJ2mdqmxCHM4zBJe/fZWIbO3k1RN1e+Gy+Fn4TjqVu2LvP7zqekW0nGrhvL7su77Xr9387/xqRNk6hZqibz+86nWgmZNiyIHCJpbzh2lVEBe6lUqggrJrbHSwo/CQdVo2SN3yvlPb/heTZGbLTLdVecWsGUrVNoWqEpcx+ZK401CjDTk/aqg5GMXxhC/colWT6hA1VKO+56WCEAPIp7EPhIII3KN+K1ra+x6vQqm15v7tG5TA2eSqdqnfDv5U+pwqVsej3h2ExN2oE7z/HqssO09SzH4nHtKOde2MxwhMix0kVKM7vXbNpXac+7u95lfth8q19Da81n+z/j8wOf09ezL190/8KhN/kI+zAlaWut+d/6U0z96Ri9G1UiYHRrShRx+M2ZQvxFcbfifNX9K/rU6sMn+z/hywNfWq3QVJYli38F/4vAsECG1B9iFH5ygu30wvbsnilvF36at+s8A1tVZ/pTTSjkavosjRB54ubqxvTO0ylZuCRzjs4hLi2Of7b95wMVakrPSufN7W+yPmI9fk39eKH5C7ITWPzOrkk7I8vC6yuOsOpgFM918uQfjzaUwk/C6bm6uPJOu3coXaQ03x79lsT0RP7d6d95KomanJHMy5tfZvfl3bze+nVGNBphg4iFM7Nb0k7NyGLSogNsPBHNlEfq83y32jJ6EPmGUoqXW75M6cKl+TTkUxIzEvms62e5aj4QlxrHpI2TCIsN44OOH/B4ncdtGLFwVnaZl0hIzWBkwF42nYzm/ScaM+lhqdQn8qfRjUcztcNUgi8FM379eOLT4nP0uqs3rzJ67WhOXD/BZ90+k4Qt7snmSftaUhrDZu/mQMQNvhjaghHtatr6kkKY6qm6T/Fp108Jiw1jzG9jiEmOue/xFxIuMGrtKC7fvMzMnjPp/lB3O0UqnJFNk3ZUXAqD/YMJj0lizigfBjSrasvLCeEwetbsyTc9viEyMZJRa0cRmRh51+NOXj/JyF9HcjPjJgGPBNCmShs7Ryqcjc2S9ploo/BTTFIaC8e25eH6FW11KSEcUvuq7fm297ckpCcw8teRnL5x+i/fPxh9kDFrx1DIpRDz+8zHu4K3SZEKZ5Jt0lZKBSilopVSoTk9aUp6FoNnBZORpVnm1x6fWlL4SRRMTT2aMu+ReSgUo9eO5nDMYQB2RO3Ab50f5YuVZ0HfBXiV8TI5UuEscjLSngf0yc1Jz167SfHCrqyY0J5GVWXLrSjY6pStQ9CjQZQpUoZx68bxxYEveHHji3iW9mRen3lUKVHF7BCFE1E52cGllKoFrNFaN87JSUvVqK9PhR6mcumiDxieEPnHtZRrTFg/gZM3TtKqUiu+6v4VJQuXNDss4SCUUiFaa5/sjrPaOm2llB/gB1D9oZqSsIX4mwrFKhDQJ4D159fTz6sfRQvJz4jIPas9iNRaz9Za+2itfSp5SNlIIe6mVOFSPF3vaUnYIs+k6IcQQjgRSdpCCOFEcrLkbwkQDNRXSkUqpcbaPiwhhBB3k+2DSK31MHsEIoQQInsyPSKEEE5EkrYQQjgRSdpCCOFEJGkLIYQTkaQthBBORJK2EEI4EUnaQgjhRCRpCyGEE5GkLYQQTkSSthBCOBFJ2kII4UQkaQshhBORpC2EEE5EkrYQQjgRSdpCCOFEJGkLIYQTkaQthBBORJK2EEI4EUnaQgjhRCRpCyGEE5GkLYQQTkSSthBCOJEcJW2lVB+l1Eml1Bml1Ju2DkoIIcTdZZu0lVKuwDdAX6ARMEwp1cjWgQkhhLhTTkbabYAzWuuzWut0YCnwuG3DEkIIcTeFcnBMNeDin34fCbT9+0FKKT/A79Zv05RSoQ8eXr5QAbhmdhAOQD6HP8hn8Qf5LP5QPycH5SRp54jWejYwG0AptV9r7WOtczsz+SwM8jn8QT6LP8hn8Qel1P6cHJeT6ZEooMaffl/91p8JIYSws5wk7X1AXaWUp1KqMDAU+NG2YQkhhLibbKdHtNaZSqkXgN8AVyBAax2WzctmWyO4fEI+C4N8Dn+Qz+IP8ln8IUefhdJa2zoQIYQQViI7IoUQwolI0hZCCCdi1aQt290NSqkApVS0rFUHpVQNpdRmpdQxpVSYUupls2Myi1KqqFJqr1Lq8K3PYqrZMZlNKeWqlDqolFpjdixmUkqdV0odVUodym7pn9XmtG9tdz8F9MLYgLMPGKa1PmaVCzgRpVQXIAkI0lo3NjseMymlqgBVtNYHlFIlgRDgiQL690IB7lrrJKWUG7ADeFlrvdvk0EyjlHoN8AFKaa37mx2PWZRS5wEfrXW2G42sOdKW7e63aK23AdfNjsMRaK0va60P3Pp1InAcY5dtgaMNSbd+63brq8CuBFBKVQf6Ad+aHYszsWbSvtt29wL5wynuTilVC2gB7DE5FNPcmg44BEQD67XWBfazAD4HXgcsJsfhCDSwTikVcqskyD3Jg0hhF0qpEsD3wCta6wSz4zGL1jpLa90cY2dxG6VUgZw+U0r1B6K11iFmx+IgOmmtW2JUU510a4r1rqyZtGW7u7irW/O33wOLtNYrzY7HEWit44DNQB+TQzFLR2DArbncpUB3pdRCc0Myj9Y66tZ/o4FVGNPNd2XNpC3b3cUdbj18mwsc11p/ZnY8ZlJKeSilytz6dTGMh/YnTA3KJFrrt7TW1bXWtTByxSat9XCTwzKFUsr91kN6lFLuQG/gnivPrJa0tdaZwO3t7seB73Kw3T1fUkotAYKB+kqpSKXUWLNjMlFHYATGSOrQra9HzQ7KJFWAzUqpIxiDnPVa6wK91E0AUAnYoZQ6DOwFftZar73XwbKNXQghnIg8iBRCCCciSVsIIZyIJG0hhHAikrSFEMKJSNIWQggnIklbCCGciCRtIYRwIv8PDrdF1ad7+6AAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.axis([0,5,0,7])\n",
"plt.plot(x,df)\n",
"plt.legend(data,loc=2)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"pop = np.random.randint(0,100,100)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([6., 4., 9., 6., 4., 7., 2., 4., 5., 7., 3., 2., 2., 5., 5., 8., 9.,\n",
" 5., 5., 2.]),\n",
" array([ 0. , 4.95, 9.9 , 14.85, 19.8 , 24.75, 29.7 , 34.65, 39.6 ,\n",
" 44.55, 49.5 , 54.45, 59.4 , 64.35, 69.3 , 74.25, 79.2 , 84.15,\n",
" 89.1 , 94.05, 99. ]),\n",
" )"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAALn0lEQVR4nO3dW4jc93mH8edbKYfaCbFdL8GRvF2VmhRjSO0urV2XUuyUJlZIbnLhkLRpCexN2yghENb0IvROgZAmhWAqcii0xilVTGskyKGOQ+mNGskxiSzZjRvLtly7diBHU7BN317MKFmrK+9otX/NuzPPBwZrTrvvz7/Vo9F/569NVSFJ6usXpj2AJOmVGWpJas5QS1JzhlqSmjPUktTcziE+6JVXXllLS0tDfGhJmknHjh37flUtrHffIKFeWlri6NGjQ3xoSZpJSR4/130e+pCk5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmBjkzcTtaWj286eee2r93CyeRZsOF/J4Cf1+t5StqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKamyjUST6c5KEkx5PcneS1Qw8mSRrZMNRJdgEfBJar6jpgB3D70INJkkYmPfSxE/jFJDuBS4D/Gm4kSdJaOzd6QFU9leQTwBPA/wBfraqvnv24JCvACsDi4uJWzylpCpZWD097BDHZoY/LgXcBe4A3AZcmed/Zj6uqA1W1XFXLCwsLWz+pJM2pSQ59vBV4rKqeq6oXgXuA3x52LEnSGZOE+gngxiSXJAlwK3By2LEkSWdsGOqqOgIcBB4AvjN+zoGB55IkjW34zUSAqvoY8LGBZ5EkrcMzEyWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqbmJfsKL+lpaPbzp557av3cLJ7l45nHNmm++opak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqbmJQp3ksiQHkzyc5GSSm4YeTJI0MukPt/008OWqeneSVwOXDDiTJGmNDUOd5A3A7wJ/DFBVLwAvDDuWJOmMSV5R7wGeA76Q5C3AMWBfVT2/9kFJVoAVgMXFxU0PtLR6eNPPPbV/76afeyEuZGaY3tyStodJjlHvBG4A7qyq64HngdWzH1RVB6pquaqWFxYWtnhMSZpfk4T6NHC6qo6Mrx9kFG5J0kWwYair6hngySRvHt90K3Bi0KkkST8z6bs+/hy4a/yOj+8BfzLcSJKktSYKdVU9CCwPO4okaT2emShJzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc1N+qO4pC21tHp42iNsK/P4/2taaz61f+9UPu8r8RW1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNTRzqJDuSfCvJoSEHkiS93Pm8ot4HnBxqEEnS+iYKdZLdwF7gs8OOI0k6284JH/cp4KPA68/1gCQrwArA4uLiBQ+2GdP68fIXajvOvR1nlrarDV9RJ3kH8GxVHXulx1XVgaparqrlhYWFLRtQkubdJIc+bgbemeQU8EXgliR/P+hUkqSf2TDUVXVHVe2uqiXgduDrVfW+wSeTJAG+j1qS2pv0m4kAVNU3gG8MMokkaV2+opak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpObO6ye8SNvd0urhTT/31P69WziJNDlfUUtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1NyGoU5ydZL7k5xI8lCSfRdjMEnSyCQ/3PYl4CNV9UCS1wPHknytqk4MPJskiQleUVfV01X1wPjXPwFOAruGHkySNJKqmvzByRLwr8B1VfXjs+5bAVYAFhcXf+Pxxx/f1EBLq4c39TxJmrZT+/du+rlJjlXV8nr3TfzNxCSvA74EfOjsSANU1YGqWq6q5YWFhU0PK0l6uYlCneRVjCJ9V1XdM+xIkqS1JnnXR4DPASer6pPDjyRJWmuSV9Q3A38I3JLkwfHltoHnkiSNbfj2vKr6NyAXYRZJ0jo8M1GSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJak5Qy1JzRlqSWrOUEtSc4Zakpoz1JLUnKGWpOYMtSQ1Z6glqTlDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5gy1JDVnqCWpOUMtSc0ZaklqzlBLUnOGWpKaM9SS1JyhlqTmDLUkNWeoJam5iUKd5G1JHknyaJLVoYeSJP3chqFOsgP4DPB24FrgPUmuHXowSdLIJK+ofxN4tKq+V1UvAF8E3jXsWJKkM3ZO8JhdwJNrrp8GfuvsByVZAVbGV3+a5JFNznQl8P1NPne7msc1w3yuex7XDHOy7nz8ZVfPd82/fK47Jgn1RKrqAHDgQj9OkqNVtbwFI20b87hmmM91z+OaYT7XvZVrnuTQx1PA1Wuu7x7fJkm6CCYJ9TeBa5LsSfJq4Hbg3mHHkiSdseGhj6p6KcmfAV8BdgCfr6qHBpzpgg+fbEPzuGaYz3XP45phPte9ZWtOVW3Vx5IkDcAzEyWpOUMtSc21CfW8nKae5Ook9yc5keShJPvGt1+R5GtJvjv+7+XTnnWrJdmR5FtJDo2v70lyZLzn/zD+ZvVMSXJZkoNJHk5yMslNs77XST48/to+nuTuJK+dxb1O8vkkzyY5vua2dfc2I389Xv+3k9xwPp+rRajn7DT1l4CPVNW1wI3An47XugrcV1XXAPeNr8+afcDJNdc/DvxVVf0q8APgA1OZalifBr5cVb8GvIXR+md2r5PsAj4ILFfVdYzegHA7s7nXfwu87azbzrW3bweuGV9WgDvP6zNV1dQvwE3AV9ZcvwO4Y9pzXaS1/zPw+8AjwFXj264CHpn2bFu8zt3jL9xbgENAGJ21tXO9r4FZuABvAB5j/E37NbfP7F7z8zOZr2D0rrJDwB/M6l4DS8DxjfYW+BvgPes9bpJLi1fUrH+a+q4pzXLRJFkCrgeOAG+sqqfHdz0DvHFacw3kU8BHgf8dX/8l4IdV9dL4+izu+R7gOeAL40M+n01yKTO811X1FPAJ4AngaeBHwDFmf6/PONfeXlDjuoR67iR5HfAl4ENV9eO199Xoj9yZed9kkncAz1bVsWnPcpHtBG4A7qyq64HnOeswxwzu9eWM/tG2PcCbgEv5/4cH5sJW7m2XUM/VaepJXsUo0ndV1T3jm/87yVXj+68Cnp3WfAO4GXhnklOM/vXFWxgdu70syZmTrmZxz08Dp6vqyPj6QUbhnuW9fivwWFU9V1UvAvcw2v9Z3+szzrW3F9S4LqGem9PUkwT4HHCyqj655q57gfePf/1+RseuZ0JV3VFVu6tqidHefr2q3gvcD7x7/LCZWjNAVT0DPJnkzeObbgVOMMN7zeiQx41JLhl/rZ9Z80zv9Rrn2tt7gT8av/vjRuBHaw6RbGzaB+PXHFy/DfgP4D+Bv5j2PAOu83cY/XXo28CD48ttjI7Z3gd8F/gX4IppzzrQ+n8PODT+9a8A/w48Cvwj8JppzzfAen8dODre738CLp/1vQb+EngYOA78HfCaWdxr4G5Gx+FfZPS3pw+ca28ZffP8M+O+fYfRu2Im/lyeQi5JzXU59CFJOgdDLUnNGWpJas5QS1JzhlqSmjPUktScoZak5v4PQbfEgSsddf0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(pop,bins=20)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAKcUlEQVR4nO3dX4ilB3nH8d/TbESjpVoyiM2fTi4kEISaMti0gV4kCqkR0wsvIkRssexNbWMRZL2S3uWiiL0ohSWmCoZIiYGKgbZBI1KQtJs/tUlWUexWY2MzIq22F01Tn17MkSaD2Zk95+wcnsznA8Oe8847531elvny8s573lPdHQDm+blNDwDAcgQcYCgBBxhKwAGGEnCAoU4c5cYuv/zy3t7ePspNAoz36KOP/qC7t/YvP9KAb29v58yZM0e5SYDxqupfftZyp1AAhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhjrSd2LCMrZPPbjpEdbm3F23bnoEXkEcgQMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQx0Y8Kq6p6qeq6onX7TsF6vqoar65uLfN1zcMQHY7zBH4J9Kcsu+ZaeSfLG735zki4vnAByhAwPe3V9J8sN9i29L8unF408n+e31jgXAQZY9B/7G7n528fj7Sd64pnkAOKSVP1Ktu7uq+uW+X1Unk5xMkquvvnrp7fhYLYCXWvYI/N+q6k1Jsvj3uZdbsbtPd/dOd+9sbW0tuTkA9ls24J9P8v7F4/cn+av1jAPAYR3mMsL7knw1ybVV9UxVfSDJXUneUVXfTPL2xXMAjtCB58C7+70v862b1zwLABfAOzEBhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhlop4FX1R1X1VFU9WVX3VdWr1zUYAOe3dMCr6ookf5hkp7vfkuSSJLevazAAzm/VUygnkrymqk4kuSzJv64+EgCHsXTAu/t7Sf4kyXeSPJvkP7r7b/evV1Unq+pMVZ3Z3d1dflIAXmKVUyhvSHJbkmuS/FKS11bVHfvX6+7T3b3T3TtbW1vLTwrAS6xyCuXtSf65u3e7+3+SPJDkN9YzFgAHWSXg30lyQ1VdVlWV5OYkZ9czFgAHWeUc+CNJ7k/yWJJ/WrzW6TXNBcABTqzyw939sSQfW9MsAFwA78QEGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGGqluxFyNLZPPbjpEdbm3F23bnoEeMVwBA4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEOtFPCqen1V3V9VX6+qs1X16+saDIDzW/UDHf40yV9393uq6lVJLlvDTAAcwtIBr6pfSPKbSX4nSbr7+STPr2csAA6yyimUa5LsJvmLqnq8qu6uqtfuX6mqTlbVmao6s7u7u8LmAHixVQJ+IsmvJvnz7r4+yX8lObV/pe4+3d073b2ztbW1wuYAeLFVAv5Mkme6+5HF8/uzF3QAjsDSAe/u7yf5blVdu1h0c5Kn1zIVAAda9SqUP0hy7+IKlG8n+d3VRwLgMFYKeHc/kWRnPaMAcCG8ExNgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgqFVvJwtw0WyfenDTI6zFubtuvSiv6wgcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhq5YBX1SVV9XhVfWEdAwFwOOs4Ar8zydk1vA4AF2ClgFfVlUluTXL3esYB4LBWPQL/RJKPJPnJy61QVSer6kxVndnd3V1xcwD81NIBr6p3JXmuux8933rdfbq7d7p7Z2tra9nNAbDPKkfgNyZ5d1WdS/LZJDdV1WfWMhUAB1o64N390e6+sru3k9ye5EvdfcfaJgPgvFwHDjDUiXW8SHd/OcmX1/FaAByOI3CAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoZYOeFVdVVUPV9XTVfVUVd25zsEAOL8TK/zsC0k+3N2PVdXPJ3m0qh7q7qfXNBsA57H0EXh3P9vdjy0e/zjJ2SRXrGswAM5vLefAq2o7yfVJHvkZ3ztZVWeq6szu7u46NgdA1hDwqnpdks8l+VB3/2j/97v7dHfvdPfO1tbWqpsDYGGlgFfVpdmL973d/cB6RgLgMFa5CqWSfDLJ2e7++PpGAuAwVjkCvzHJ+5LcVFVPLL7euaa5ADjA0pcRdvffJak1zgLABfBOTIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYYScIChVvlQY+Ai2z714KZHWJtzd9266RFecRyBAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUCsFvKpuqapvVNW3qurUuoYC4GBLB7yqLknyZ0l+K8l1Sd5bVdetazAAzm+VI/C3JflWd3+7u59P8tkkt61nLAAOUt293A9WvSfJLd39e4vn70vya939wX3rnUxycvH02iTfWH7ci+7yJD/Y9BAbdJz3/zjve3K893/Cvv9yd2/tX3jRPxOzu08nOX2xt7MOVXWmu3c2PcemHOf9P877nhzv/Z+876ucQvlekqte9PzKxTIAjsAqAf+HJG+uqmuq6lVJbk/y+fWMBcBBlj6F0t0vVNUHk/xNkkuS3NPdT61tss0YcarnIjrO+3+c9z053vs/dt+X/iMmAJvlnZgAQwk4wFACvnCcbwtQVfdU1XNV9eSmZzlqVXVVVT1cVU9X1VNVdeemZzoqVfXqqvr7qvrHxb7/8aZnOmpVdUlVPV5VX9j0LMsQ8LgtQJJPJbll00NsyAtJPtzd1yW5IcnvH6P/+/9OclN3/0qStya5papu2OxIR+7OJGc3PcSyBHzPsb4tQHd/JckPNz3HJnT3s9392OLxj7P3y3zFZqc6Gr3nPxdPL118HZurGqrqyiS3Jrl707MsS8D3XJHkuy96/kyOyS8x/6+qtpNcn+SRDY9yZBanEJ5I8lySh7r72Ox7kk8k+UiSn2x4jqUJOCSpqtcl+VySD3X3jzY9z1Hp7v/t7rdm753Ub6uqt2x4pCNRVe9K8lx3P7rpWVYh4HvcFuAYq6pLsxfve7v7gU3Pswnd/e9JHs7x+VvIjUneXVXnsnfK9Kaq+sxmR7pwAr7HbQGOqaqqJJ9Mcra7P77peY5SVW1V1esXj1+T5B1Jvr7RoY5Id3+0u6/s7u3s/b5/qbvv2PBYF0zAs3dbgCQ/vS3A2SR/+Qq4LcChVdV9Sb6a5NqqeqaqPrDpmY7QjUnel70jsCcWX+/c9FBH5E1JHq6qr2XvIOah7h55Od1x5a30AEM5AgcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKH+DwwrIHQke1q7AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"index = np.arange(5)\n",
"values = [10,7,11,1,5]\n",
"plt.bar(index, values)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}